

HiGHmed - Digital Networking in Medicine

Prof. Dr. Christoph Dieterich, Universitätsklinikum Heidelberg
HiGHmed-Pl Heidelberg

HiGHmed Partners

BMBF-funded HiGHmed Project Partners

BERLIN

- Robert Koch-Institut
- Ada Health GmbH
- Charité Universitätsmedizin Berlin

BRAUNSCHWEIG

- Technische Universität Braunschweig
- Helmholtz-Zentrum für Infektionsforschung GmbH

COTTBUS

Carl-Thiem-Klinikum Cottbus gGmbH

DARMSTADT

Technische Universität Darmstadt

ERLANGEN

Siemens Healtcare GmbH

FRANKFURT AM MAIN

Dell Technologies

GÖTTINGEN

- Universitätsmedizin Göttingen
- Hochschule für angewandte Wissenschaft und Kunst Hildesheim/Holzminden/Göttingen

HANNOVER

- Medizinische Hochschule Hannover
- Hochschule Hannover

HEIDELBERG

- Universitätsklinikum Heidelberg und Ruprecht-Karls-Universität Heidelberg
- Deutsches Krebsforschungszentrum
- NEC Laboratories Europe GmbH

HEILBRONN

Hochschule Heilbronn

KIEL

 Universitätsklinikum Schleswig-Holstein/ Christian-Albrechts-Universität zu Kiel

KÖLN

Universitätsklinikum Köln

LÜBECK

 Universitätsklinikum Schleswig-Holstein/ Universität zu Lübeck

MÜNSTER

 Westfälische Wilhelms-Universität Münster und Universitätsklinikum Münster

POTSDAM

Hasso-Plattner-Institut f
 ür Softwaresystemtechnik GmbH

WALLDORF

InterComponentWare AG

WÜRZBURG

 Universitätsklinikum Würzburg und Julius-Maximilians-Universität Würzburg 8 University hospitals

9 Academic partners

5 Industry partners

1 Network partner

8 university hospitals developing data integration centers

LEGENDE

- AKADEMISCHE PARTNER
- INDUSTRIEPARTNER
- VERNETZUNGSPARTNER
- DATENINTEGRATIONSZENTREN

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

HiGHmed – Approach and Goals

- Development of an open, interoperable and research-compatible eHealth platform to support local and cross-site patient care and research
- Reuse of medical data from healthcare for research
- Rapid exploitation of research findings in healthcare
- Comprehensive concept for training and further education
- Demonstration of benefit from three clinical use cases with excellent researchers and clinicians
- Innovative technical concept :
 - Semantic layer (based on international standards)
 - Joint information management / cooperative modeling
 - Cross-site requests and analyses
- Multi-level roll out concept (participation model)

HiGHmed – Objectives of Use Cases

Oncology - Integration of various data types for personalized tumor boards

- Supporting existing organ-specific tumor boards
- Cross-institution molecular tumor board with experts
- Discovery of "similar patients", involvement of recent / newest scientific information and knowledge
- Consulting according to recent / newest therapy approaches

Cardiology – Continuous monitoring of patients with heart insufficiency

- Study registry for identifying risk factors of heart insufficiency
- Long-term support for patients following stay in hospital
- Connected with sensoric & app

Infection Control – Smart Infection Control System for pathogen outbreaks in hospitals

- Early recognition of clusters and spreading of pathogens in hospitals
- Reducing risks of infection in hospitals
- Close cooperation with Robert Koch Institute in Berlin

EFÖRDERT VOM

HiGHmed Use Case Oncology- Motivation

The challenge in oncology

- More precise tumor characterization leads to ever smaller patient subgroups
- Expertise for all subgroups and therapy options cannot provided at every HiGHmed-location
- Cooperation across locations is essential

Clinical focus in the Use Case Oncology (UCO)

- Hepato-pancreatic biliary tumors (HPB)
- Aggressive course
- Always require a multidisciplinary therapy
- High demand for innovative strategies

HiGHmed – Use Case Oncology

Goals/ Objectives

- Integration of all relevant clinical and scientific data sources
- Establishment of a cross-institutional Molecular Tumor Board (MTB)
- Therapy recommendation based on molecular tumor characterization
- Validation and initiation of innovative clinical studies in selected patient groups (basket/umbrella studies)
- Use of the generated knowledge to develop new treatment strategies
- Establishment of an extensive oncological database across all locations
- Support of a cross-site search for "similar patients"
- Integration of the latest scientific findings ("world knowledge")

EFÖRDERT VOM

Use Case Oncology- Data sources

GEFÖRDERT VO

Therapy recommendation based on molecular tumor characterization

Use Case Oncology- Prospects for 2020

- Focus on software support of the MTB
- Project for panel evaluation of all locations by NCT MASTER
- Project for the follow-up survey
- Project to evaluate the benefit of the MTB software

GEFÖRDERT VOM

HiGHmed Use Case Cardiology- Motivation

Importance for the healthcare system:

- 2-3 million patients with chronic heart failure
- Most common reason for hospitalization in germany (500,000 per year)
- approx. 50,000 heart failure-related deaths (third most common cause of death)
- approx. 5 billion € per year health-related costs due to heart failure

Use Case Cardiology

- Goal/ Objectives: Reduction of hospitalization and mortality of HI-risk patients through clinical decision support
 - Identification of high risk patients
 - Use of wearables & apps for recording longitudinal data
 - Adaptation of medical treatment to personal patient risks due to different data sources
 - data exchange between the different HiGHmed-locations

Use Case Cardiologie- Data sources

GEFÖRDERT VO

Use Case Cardiologie- App& Sensorik

Motivation

- Longitudinal survey of the patient's everyday life (out of the hospital)
- Connection to clinical development can be understood

Concept

Physical parameters and KCCQ12

Challenges

- Personal ressources and logistics
 - Consent, Onboarding, First Level Support

GEFÖRDERT VON

Use Case Cardiology- Prospects for 2020

- Collection of structured data sets from clinical routine care (also harmonization across sites)
- Identification and optimization of infrastructural factors that limit effective data collection from clinical routine
- Development of first models for the cross-site analysis of longitudinal data from routine clinical care (depending on follow-ups)
- Implementation of wearables in clinical care and survey longitudinal sensor data (including activity) and patient-reported outcomes (PROs)

HiGHmed Use Case Infection Control- Motivation

Microbiological data:

- High complexity
- High granularity
- Restricted availability
- Low degree of standardization
- Highly interpretable

Transaction data:

- additional source systems
- increased susceptibility to errors
- unsafe information content
- Highly interpretable
- not enough standardization

HiGHmed Use Case Infection Control- Motivation

Today: Reaction

Tomorrow: Anticipation

Outbreaks cannot be completely prevented

But:

- The number of clusters can be reduced
- The number of detected clusters can be increased
- The number of affected people and effects can be reduced

Use Case Infection Control

- Goal/ Objectives: Development of an "Smart Infection Control System (SmICS)" automatic early warning system for clusters and outbreaks
 - Interactive visualization of patient, movement and microbiology data
 - Algorithmic detection of pathogens, clusters and outbreaks
 - Identification of pathogen clusters
 - Automatic pathogen surveillance
 - New insights through inter-institutional data exchange and machine learning, e.g.
 - Intersection points of patient movements
 - Identification of information sources

Use Case Infection Control - SmICS

Requirements for the SmICs system

- User friendly, intuitive
- Real-time capability
- Stable, scalable, open, expandable
- Learnable
- Hypothesis Generation
- Independent of institutions

→ Time saving and Knowledge

Use Case Infection Control- Prototype SmICS visualization component

Use Case Infection Control- Prospects for 2020

- # Advancement of visualization and algorithms on the basis of meaningful (large-scale) data sets for test and analysis purposes
- Pilot SmICS V1.0 => COVID-19
- Test of further algorithms of known data sets (outbreaks) with questions regarding to sensitivity, specificity und precision
- Molecular genetic characterization of a pathogen sentinel for the precision of SmICS

HiGHmed Platform

- 1. Open Service Models: All specifications of the APIs are openly accessible to everybody. Specifications include data security and privacy, electronic health record management, and database queries.
- 2. Open Information Models: All clinical models (e.g. lab values) are well defined based on established open standards. Data based on these models can be reliably processed and computed in local and distributed environments.
- 3. Open System Specifications: All system components and protocols are openly specified using licenses feasible for commercial and non-commercial use. i.e. every component in the system can be replaced by software from multiple vendors or by an open source project.

GEFÖRDERT VOM

Technical Concept

- Each HiGHmed site establishes a Data Integration Center according to common HiGHmed standards
- Local implementation of the HiGHmed platform to establish shared services and data models
- Use of IHE XDS Cross-Enterprise Document Sharing to establish vendor-neutral archives and to support continuity of care processes
- Working on joint semantics through openEHR; with common archetypes and AQL query language interface
- Implement FHIR interfaces to enhance data exchange capabilities
- Each site can setup local data analytics layers
- Striving for vendor neutrality in the implementation of the technological stack to support a dynamic ecosystem of contributions following common standards
- Providing a support structure for rollout at different sites with exchange of best practice guidelines

HiGHmed – Project Progress

- The Conference of Independent Data Protection Commissioners of the Federal Government gave their agreement to a nationwide standard model text for patient consent (Broad Consent)
- Initial HiGHmed Privacy Concept approved by TMF Data Protection Working Group
- Approval from the ethical committee for the clinical use cases
- Minimal data sets generated for the clinical use cases Identification of source systems and interfaces
- Governance model established (governs the responsibilities and processes of the preparation, and the cross-site revision of archetypes and templates)
- # Harmonization of terminology use for the core data set and the extension modules in the medical informatics initiative

The HiGHmed team says thank you for your attention!

