

EXPERIENCE WITH SOCIAL-CVPP GENT - ENERGENT

ORIGIN OF THE PROJECT & BUURZAME STROOMPROJECT

- ≻Origin:
 - Some people in the neighbourhood wanted to investigate the possibility to share solar electricity.
 - They also wanted to keep this solar energy in the neighbourhood and were dreaming of a neighbourhood battery.
- > The project BUURZAME STROOM was initiated
 - together with the city of Gent, DSO, samenlevingsopbouw, University and other partners.
 - GOAL: increase solar production, reach all kinds of target groups and investigate solutions for the electricity grid of the future (smart grid, energy storage/balancing).

BUURZAME STROOM – KICK OFF

BUURZAME

STROOM

PROJECT ZONE

PROJECT ZONE -CARACTERISTICS

- Urban setting
- Densily populated
- Mixture of population: socio-vulnerable residents, residents with migration background, young welleducated families.
- Renovated houses, old houses, house-owners and tenants.
- > SME's, public buildings and schools.

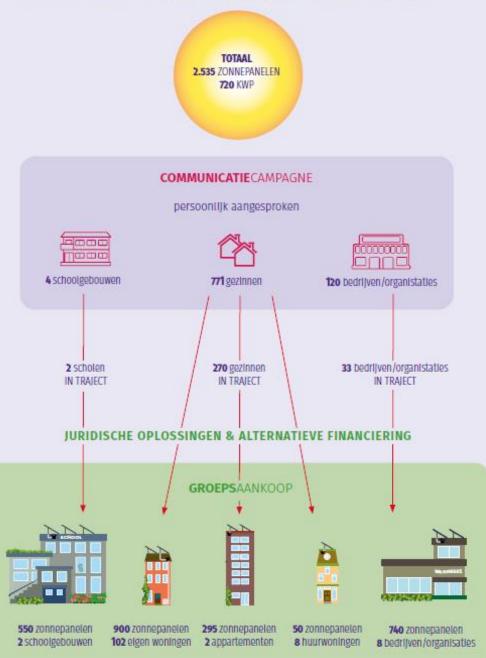
DETERMING THE COMMUNITY VALUES

Online Enquery with focus group discussions

➢Key Values

Stimulating RES in the neighbourhood and making it CO2 neutral

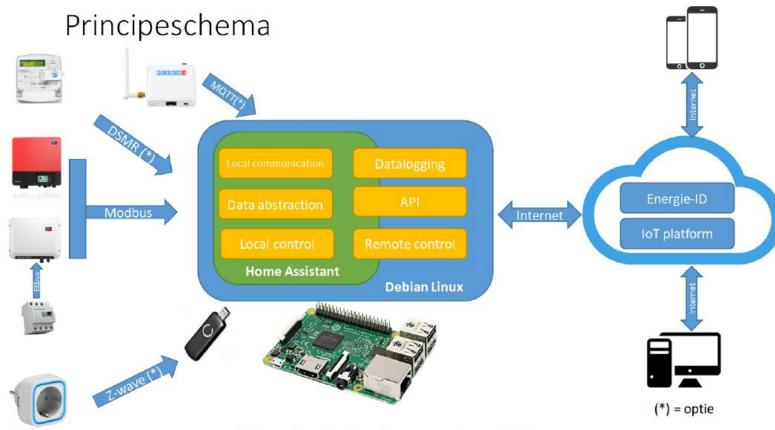
Creation of a community to battle climate change more effectively then individually - Decrease impact of big energy companies on energy market


>Minimise cost for society (avoid grid cost- organise flexibility)

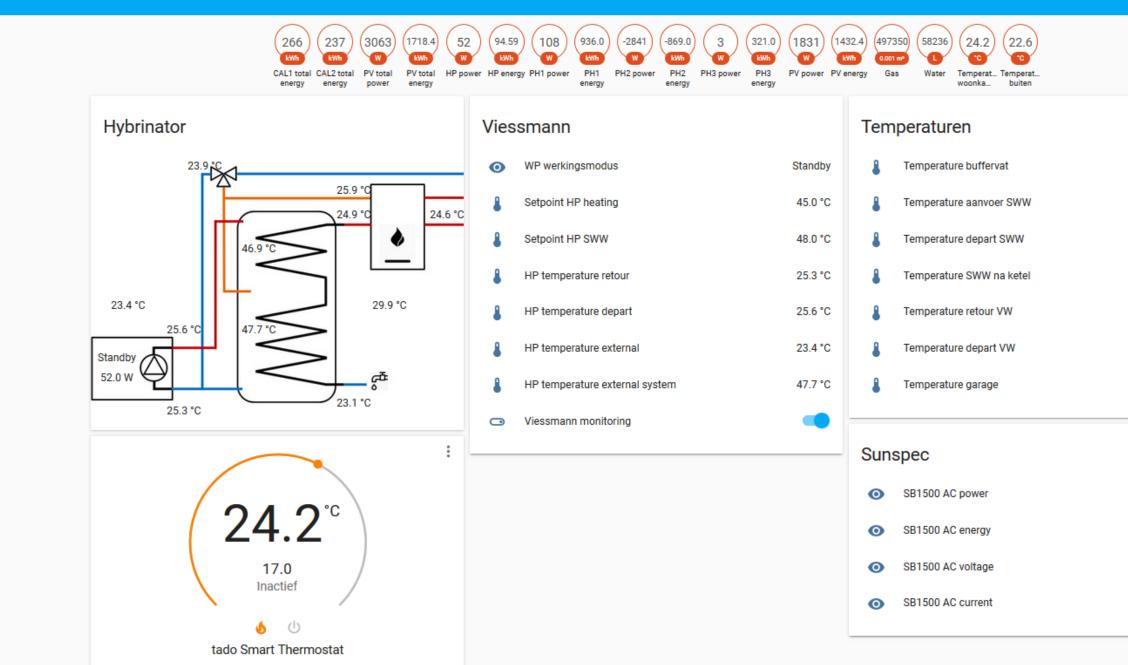
EXPANSION OF RENEWABLE ENERGY SOURCES: SOLAR PRODUCTION DOUBLED THROUGH THE PROJECT

7

ORGANISATION OF STORAGE


- 2 clusters of residential storage: 16 home batteries
- ≥1 battery at SME
- 2 pilots with thermal storage through hybrid Heat Pump
- Future extension with extra Heat pumps, EV's

RESIDENTIAL FLEXIBILITY THROUGH ENERGY MANAGEMENT SYSTEM (EMS)



Figuur 1: principeschema van de aanbieding

- Open source architecture: Home Assistant
- Low cost hardware: raspbery Pi
- Maximum flexibility to modify/expand EMS following future developments preventing lock-ins for Energent and participants.

46.9 °C

23.1 °C

24.9 °C

24.6 °C

23.9 °C

25.9 °C

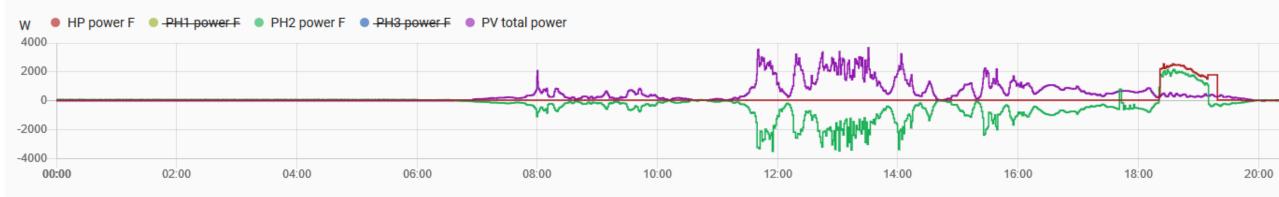
29.9 °C

1230.0 W

285.98 kWh

244.6 V

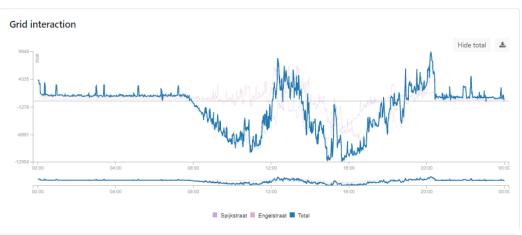
5.0 A

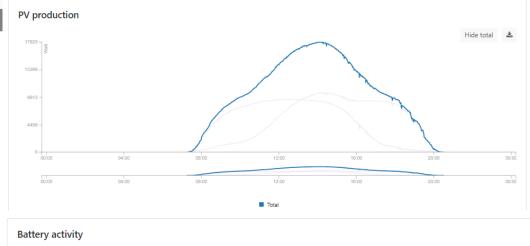


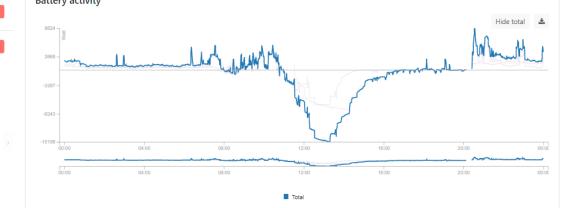
FLEXIBILITY OF HYBRID HEAT PUMP WITH THERMAL STORAGE

Noon

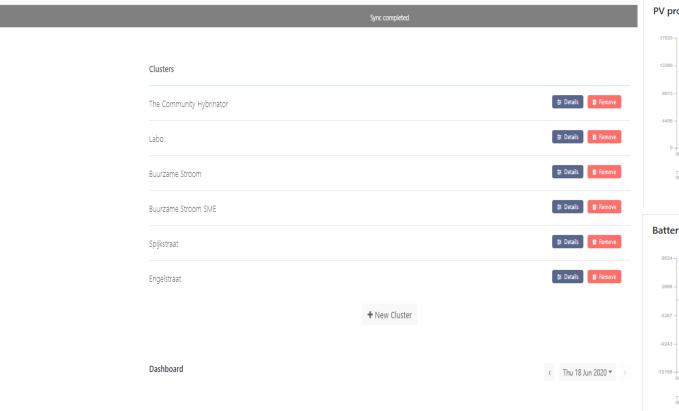
- A lot of Sun: high production
- Heating of thermal buffer






Spijkstraat 40				
НОМЕ				
Sunny Portal	0 W Zonnepanelen - opbrengst	99 % Batterijniveau		
Power wheel	22.84 kWh Resterende zonne-energie	-3037 W Verbruik		
$\bigvee \bigvee \bigvee_{3003} \bigvee \bigwedge_{3003}$	Zonnepanelen opbrengst_pv_vandaag 0 kWh opbrengst_pv_totaal 0 kWh	Verbruik Totaal verbruik Netafname - totaal 1578.58 kWh		
Batterij		Netinjectie - totaal 1853.92 kWh		
 Batterijstatus opladen 	Sturingen			
• Batterij op-ontlading -34 W	Spanningsregeling Piekabsorptie Buurtbatterij			
O Batterij peil 99	O O O Uit Uit Uit			
O Batterij niveau 6.336 kWh				

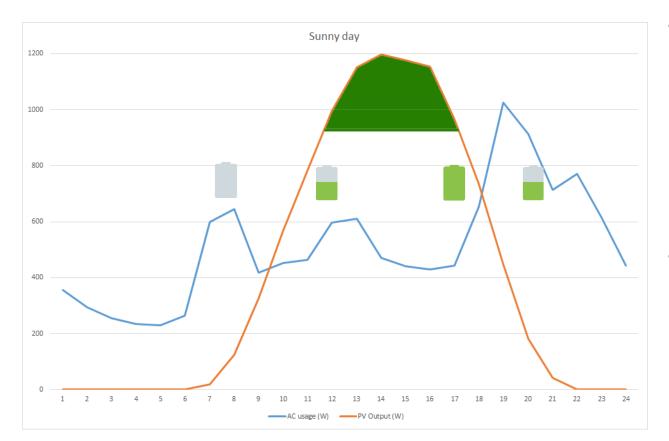
Alge	meen	Batt	orii		PV		
Alge	emeen	Dall			ΓV		
1	Grid guard	1	Manuele controle batterij		•	Manuele controle PV	
0	Actieve regeling Geen	+	Setpoint batterij	0 W	-	PV limitering	100 %
0	Actieve regelactie Geen	+	Power factor batterij	100 %	-	Power factor PV	100 %
1	Metronoom	N	Block battery		•	Set PV limit	
		N	Set battery setpoint		•	Set PV PF	
Pea	k absorption	.	Set battery PF				
.	Piek absorptie sturing	.	Battery heating		Volta	age control	
.	Ontlaadmodus O				•	Spanningscontrole	
Ø	solar_peak_time 13:30	Syst	em		0	Setpoint vermogensbegrenzing	100.0
.	Injectiepiek begonnen	ø	Memory free 38	33.6 MiB	0	Setpoint power factor	100.0
		۵	Processor use	12 %			
Spa	nningsregeling	۵	Load (5m)	0.31	Verm	nogensregeling	
o	Trap 1 238.0	۵	Memory use (percent)	20.6 %	0	Trap 1	0.98
Ø	Trap 2 240.0				0	Trap 2	0.96
ο	Trap 3 242.0	Pow	er factor regeling		O	Trap 3	0.94



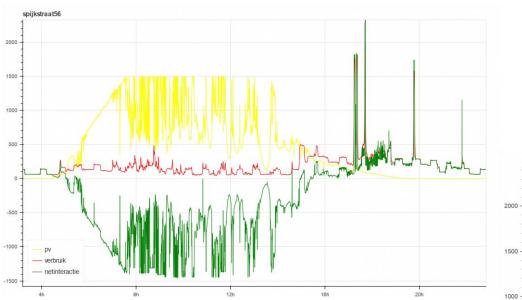
🚛 Bevices Clusters Logout

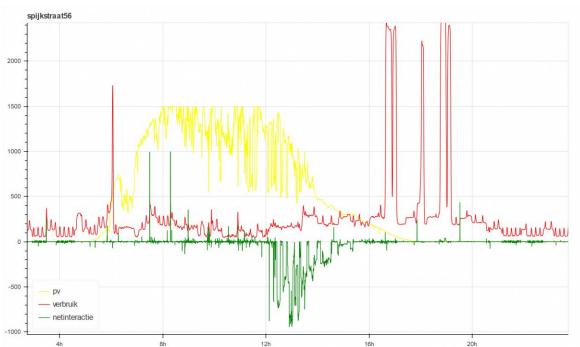
PROBLEM: OVERLOAD OF THE GRID

Noon

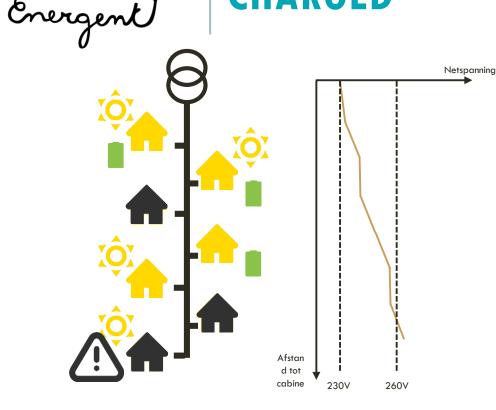

- A lot of Sun: high production
- Low consumption
- Batteries fully charged, Solar production loads the grid.
- Voltage on feeder increases
- Inverters are switched off, as tension on feeder rises to high.

SOLUTION: TEST 1 PEAKABSORPTION

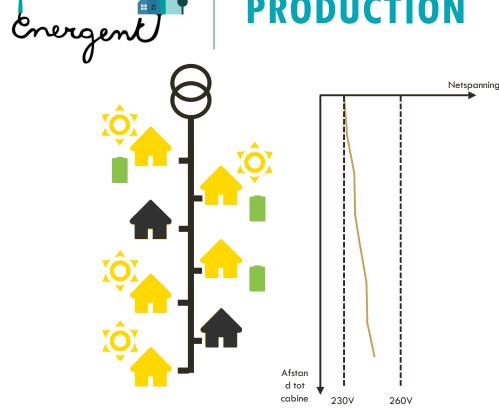

- Based on day ahead weather predictions, charging of batteries will be delayed to absorp noon peak optimally
- Evaluate impact on the grid.



SOLUTION: TEST 1 PEAKABSORPTION

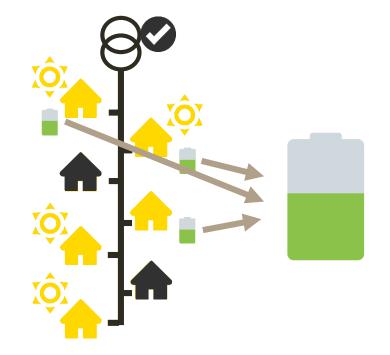


PROBLEM: A LOT OF SUN AND ALL BATTERIES ARE FULLY CHARGED


Noon

- Surplus of solar energy
- Tension on the feeder increases (the larger the distance till the MV transformator the higher the tension increases).
- Inverters are switched off, as tension on feeder rises to high.

SOLUTION: TEST 2 COLLECTIVE DECREASE OF SOLAR PRODUCTION


- As tension on feeder is increasing, EMS will send setpoints to all the inverters on this feeder to reduce production on all inverters.
- No inverters will get switched of.
- Solar production at individual level is lower, but sum of solar production on feeder is higher.

TEST 3 NEIGHTBOURHOOD BATTERY

- All solar inverters connected to EMS
- All batteries work together as a virtual neighbourhood battery to keep energyproduction in the neightbourhood.
- Exchange of energy throught the MV network will be reduced.
- Virtual neighbourhood battery could be used as ancilliary service towards aggregators.

FUTURE DEVELOPMENTS

Organise more demand side management

>Expand amount and type of controllable loads

>Introduce hybrid heat pumps as an intermediate step towards full electrification

Digital meters will be introduced in Flanders from 2020. Connection of P1 port of digital meters to the EMS is under development.

Introduction of variable electricity prices and implications on business model of storage solutions.

Flemish regulation on 'regelluwe zones' & Citizens Energy Communities, which might make 'zonnedelen' feasible. (involvement in Rolecs project)

USEF

CRES

COMMUNITY RENEWABLE ENERGY SUPPLY

Thank you!

