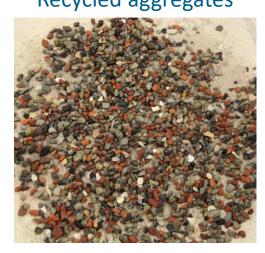


SeRaMCo

Development of new concrete mixes from recycled aggregates from unknown origin

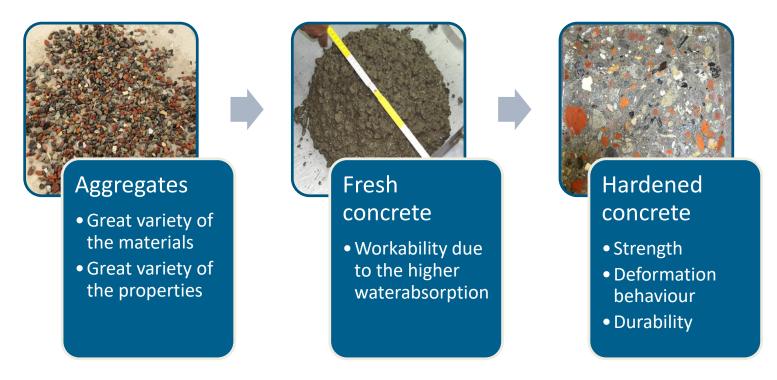
Anja Tusch



Development of different new concrete mixes containing recycled aggregates from unknown origin

Recycled aggregates

Concrete



Challenges

Production of concrete containing recycled aggregates from unknown origin causes some challenges:

Concrete mixtures for SeRaMCo

Mixture for the production of structural elements

Mixture for the production of non-structural elements

Rammed concrete

Salty concrete

Used aggregates

Crushed concrete

Type A (except R_a)

WA24: 4-5 wt.-%

Density: 2.3 kg/dm³

Fractions: 2-6 mm, 6-14 mm, 14-22 mm

Mixed aggregates

Type B (except R_a)

WA24: 6-9 wt.-%

Density: 2.2 kg/dm³

Fractions: 2-6 mm, 6-14 mm, 14-22 mm

Mixture for the production of structural elements

Mixture for the production of non-structural elements/ Pavement

Starting point: Development of a concrete mixture, which can be

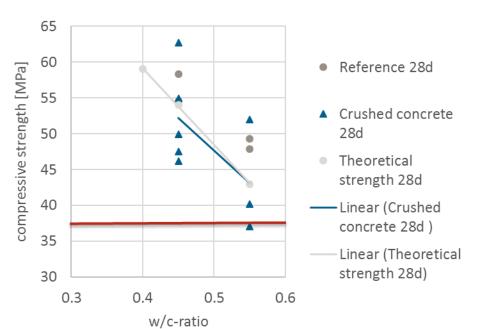
used for different structural elements

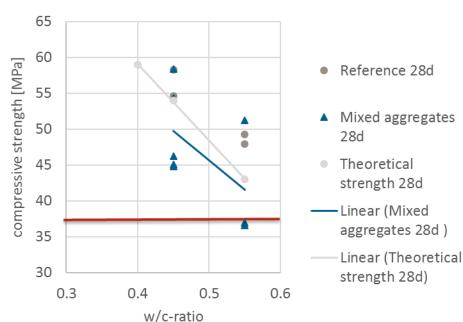
Challenge: The products are not known yet and the mixture

has to be very variably

Planned test procedure:

- Design a mixture which is able to match C 30/37 by using a standard CEM I 42.5 and recycled aggregates
- Using two different w/c ratios for the concreting of the mixture → w/c: 0.45; 0.55
- Verify the results by using different cements → CEM II 42.5;
 CEM I 52.5

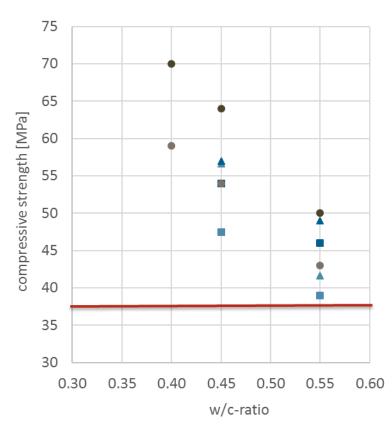




Results test series 1:

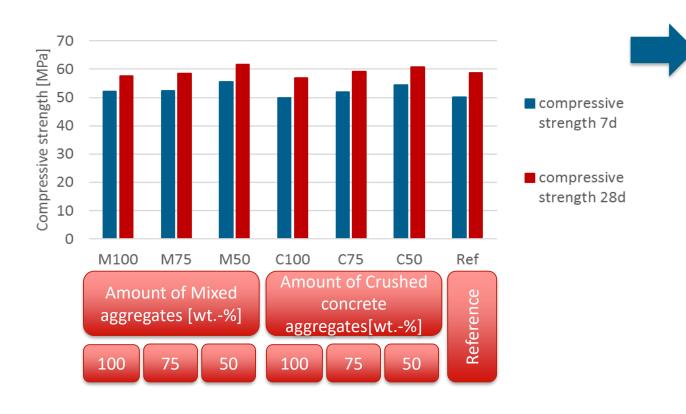
Crushed concrete aggregates

Mixed aggregates


The variations of the w/c ratio results in a scattering of the compressive strength

Results test series 2:

- ▲ Crushed concrete, 28d, CEM II 42.5 N
- ▲ Crushed concrete, 28d, CEM I 52.5 N
- Mixed aggregates, 28d, CEM II 42.5 N
- Mixed aggregates, 28d, CEM I 52.5 N
- Theoretical strength CEM 42.5, 28d
- Theoretical strength CEM 52.5, 28d


The results of test series 1 were confirmed by test series 2

Results test series 3:

Reducing the amount of recycled aggregates improves the compressive strength to a small extent, but in sum all results are ranging in the same area as the reference

Concrete mixtures

Mixture for the production of structural elements

Mixture for the production of non-structural elements/ Pavement

Requirements:

- Slump 0 (earth-moist concrete)
- High early age strength
- The resulting concrete has to fulfill the standards of EN 1338

Challenge: Properties of the product depend on the mixture as well as on the used process technology

Test procedure:

Step 1

- Determination of a well graded grain composition with a suitable cement amount and an optimum water content
- Analogous to the determination of the proctor density

Step 2

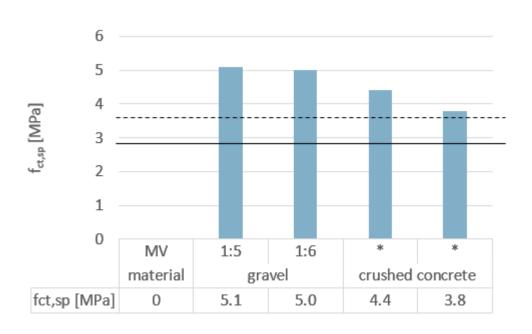
- Determine the properties of the resulting concrete mixture
- Is it able to fulfill the requirements?

Step 3

- Optimization if needed
- Addition of additives if needed

Step 4

- Testing the mixture directly in the production line
- Optimization of the mixture in combination with the production process



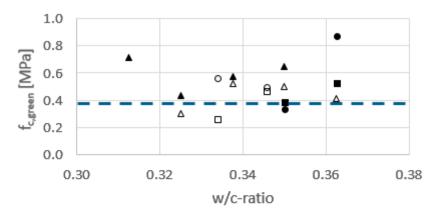
Results

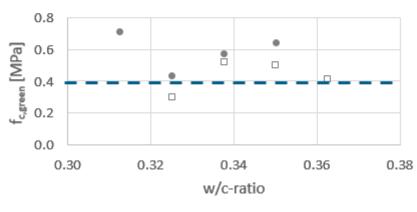
Procedure to find a suitable mixture:

- Selection of aggregates
- Determination of average cement content (corresponds to mixing ratio)
- Determination of the optimum water content in the test
- Preparation of samples and determination of strength (applying strength by cement content)
- Calculation of the mixture composition from the ingredients

Results green strength

Parameter	Influence
Water content	Most important (optimum = w _{opt})
Concrete composition (cement content and specific surface!)	Increasing with increasing cement content and specific surface
Grading curve of aggregates	Minor influence
Admixtures/additives	Depends on individual case (mixing ratio, added amount)
Compaction energy	Important





Results green strength

	Mixing					
Mix	ratio	W	С	FA	QP	Aggregates
1	1:6	X	Х	0	0	Gravel
2	1:5	x	V	0	0	Crushed
2	1.5	X	Х	U		concrete
3	1:6	X	Х	0	0	Gravel
4	1:5	x	x	0	0	Crushed
						concrete
5	1:5	X	Х	X	0	Gravel
6	1:5	X	Х	0	X	Gravel
7	1:5	X	Х	Х	0	Gravel
8	1:5	X	Х	0	X	Gravel
9	1:5	x	X	Х	0	Crushed
						concrete
10	1:5	X	X	0	х	Crushed
						concrete

□ M2, G • M4, RC

Thank you for your attention!

