

Development of New Concrete Mixes from Recycled Aggregates from known resources

Prof. Dr-Ing. Danièle

Dr-Ing. Gaer Chewe Ngapeya

Waldmann

Aims and purposes

- Recycled aggregates for a sustainable development
 - How to face issues on earlier and long term behaviour?
 - Development of new mixes using recycled aggregates through the combination of experimental and numerical approach

- What could be the best concrete class with a given recycled aggregates ?
- How to avoid the early age cracking?
- How to improve the fracture resistance?

Precast elements

Concrete mixtures

esting

Numerical models

Introduction

Aggregates characterisation

Bulk density test

Aggregate Crushing Value Test

Los Angeles Abrasion Test

3

□ High-Strength Concrete

Micro-silica ~ 2% of the binder weight Superplasticizer ~ 3 % of the binder weight Binder to aggregate ratio ~ 1:3.6 Water to binder ratio w/b ~ 0.35 Particle size skeleton reconstructed

Open Structure Concrete

Micro-silica ~ 2% of the binder weight Binder to aggregate ratio ~ 1:2.9 Water to binder ratio w/b ~ 0.35 Particle size skeleton reconstructed

$f_{c,28} = 5.7 MPa$

 $f_{c,28} = 58.5 MPa$

E = 29500 MPa

E = 1500 MPa

Self-Compacting Concrete

Master air ~ 0.15% of the binder weight Superplasticizer ~ 1.5 % of the binder weight Binder to aggregate ratio ~ 1:3.1 Water to binder ratio w/b ~ 0.35 Particle size skeleton reconstructed

 $f_{c.28} = 32.4 MPa$

0

0

Hydration process

50

Time (hours)

 $-\Delta t = 1500 \mathrm{s}$

 $\Delta t = 1000 \mathrm{s}$

 $\Delta t = 500 \mathrm{s}$

 $\Delta t = 300 \mathrm{s}$

100

- Temperature reaches is maximum at t=22.5h, and then decreases, corresponding to the decelerated period of the hydration process
- Similar phenomenon is observed regarding the development of the material strength: Young's Modulus and fracture resistance

croduction

6

Early-age behaviour

Figure 1. Simulation of the early-age behaviors of recycled concrete by using a phase field model. A high risk of cracking is noted [22, 23]

- Sensitive to early age cracking triggered by an increased shrinkage deformation in comparison to conventional concrete.
- The shrinkage behavior is proportional to the amount of recycled aggregates used as a replacement for natural aggregates
- A high risk of cracking is captured

uui.li

Fracture behaviour

- Strong impact of the interfacial properties on the fracture behavior of heterogeneous material.
 - Soft interface provides a major interfacial cracking mode
 - Stiff interface induces a main bulk cracking behaviour

Parameter	Matrix	Inclusion	Soft interphase	Stiff interphase	Unit
λ	18	60	$4.5 imes10^{-2}$	$6 imes 10^3$	GPa
μ	12	32	3×10^{-2}	$4 imes 10^3$	GPa
g_c	$5 imes 10^{-4}$	3×10^{-3}	$g_c^{si,n} = 3.75 \times 10^{-5}, \ g_c^{si,t} = 3.18 \times 10^{-5}$	5×10^{-3}	[kN/mm]

 Table 1. Material properties of the spring/coherent interface model.

Phase-field model

Interfacial behaviour

 the interfacial transition zone governs the performance of recycled concrete.

 The red line of loading curve shows the expected mechanical performance after performing the interfacial designing

Interfacial modeling

In a nutshell

uni.lu

INIVERSITÉ D

- The phase field model shown a critical shrinkage properties of non-reinforced concrete of normal strength class C20/25 with high w/c ratio. A high risk of cracking was also captured with the major damage caused by the autogenous shrinkage.
- Phase field method for accurately reproduce the complex early-age behavior of cementbased materials.
- HSC, OSC and self-compacting concrete formulated with satisfactory mechanical results.
- The reduction of both the E-Modulus and the flexural strength of the OSC with respect to the HSC demonstrated the influence of the granulometry on the mechanical performance of recycled concrete

Villmools Merci!