

Use of mixed recycled aggregates for a sustainable road construction

Final Conference
SeRaMCo
Secondary Raw
Materials for Concrete
Precast Products

Dr. Ing. Audrey Van der Wielen

Only allowed in base and subbase layers

Recent limitation: max 30 % masonry

Use of MRA in pavement concrete?

Long-term durability?

Ridias project

→ Worst case

scenario

Ground preparation

Very low bearing capacity undetected during preliminary tests

- → Lime treatment
- → Substitutions with coarse aggregates
- → Reinforcement with geogrids

The bearing capacity

remains locally low

Permeable base layer

20 cm thick

60 % in volume mixed recycled aggregates (0/32 mm)

40 % natural limestone aggregates (32/63 mm)

Final fines content of 2.89%

- Good permeability
- Difficult compaction

Cement-bound base layer

15 cm thick

Mixed recycled aggregates 0/20 mm + 6 % cement

Individual compressive strength at 90 days (MPa)	22,2	27,7	17,6
Average		22,5	

Thickness 18 cm, 4 m long slabs

25 % and 50 % substitution in volume of 4/32 agregates

	Reference concrete kg/m³	50% MRA kg / m³
Natural sandstone aggregate 2/32	1280.6	640.2
Mixed recycled aggregates 4/32		531.6
Natural sand 0/1	577.5	577.5
Cement CEM III/A 42,5 LA	350	350
Useful water	168	168
Absorption water	9.4	44.8

Slip-form placement

Fresh concrete properties

	Reference		25 vol% mixed agg.		50 vol% mixed agg.		Target value
	plant	on site	plant	on site	plant	on site	
Slump (mm)	35-55	25-45	30-60	15-40	30-40	15-50	25-40 at plant
Air content (%)	1.6	1.7	1.7	1.8	1.7	2.6	-
Water content (% by heating) (W/C+G)	10.0 9.8	-	10.7 9.9	-	10.3 11.0	9.9 10.4	Ref: 8.1 25 %: 9.1 50 %: 10.1

W/C=0,58 instead of 0,48

Compressive strength

- Low Rc for reference concrete, especially for samples made on site
- Satisfying compressive strength for recycled concretes, but large dispersion

Freeze-thaw resistance

- Unsufficient results for all concretes
 - → OK because no de-icing salts will be spread on the road
 - → Could be improved with the use of air-entraining agents
- Performances linked to the compressive strength

Slab test (cores @ 90 days)

Thickness 18 cm, 4 m long slabs

Low-cost solution, with high substitution rates (> 80 %)

Target compressive strength: 30 MPa

2 particle size distribution curves:

- RCC 0/20 (0/32)
 - → More resistant
 - → Lower fines content
- RCC 0/16 (0/20)
 - → Easier compaction

	RCC 0/32		RCC 0/20		
	% mass	kg/m³ (appr.)	% mass	kg/m³ (appr.)	
RMA 4/32	25.9	600.25			
RMA 0/20	25.9	600.25	47.9	1114.59	
Sandstone 2/6	7.1	165.27	10.7	247.86	
Crushed limestone 0/4	20.1	464.77	20.9	485.82	
CEM III A 42,5 LA (CBR Lixhe)	12.3	285	12.3	285	
Water	8.6	198	8.3	193	
Total		2313.8		2325.9	
Volume % recycled materials	7	0	65		
(without sand)	(89)	9.7)	(84)		
Fines content	3.3	3 %	4.6 %		

Compaction with both tyre and roller compactor

Single chipping surface dressing (with bituminous emulsion)

Conclusions

Different experimental pavement materials containing mixed recycled aggregates have been tested

- Little change in the implementation on site
- Satisfactory short-term performances

Long-term monitoring must confirm the durability of the proposed solutions

Possibility to introduce these applications in the Belgian standard tender specifications

- → Decrease of the cost of roads for the community (-20 to 30 %)
- → Reduction of the environmental impact

Thank you!

