

An API standard for the
information dashboard for users on

an eHUB kiosk & website platform
Deliverable 6.3

December 2020
Tjalle Groen (Taxistop)

LTWP 6.3 An API standard for the information dashboard for users on an eHUB kiosk

2

Summary sheet

Project Name eHUBS

Title of the
document

An API standard for the information dashboard for users on an eHUB
kiosk & website platform

Deliverable Deliverable 6.3

Work Package Long term

Programme Interreg North-West Europe

Coordinator City of Amsterdam

Website http://www.nweurope.eu/projects/project-search/ehubs-smart-
shared-green-mobility-hubs/

Author Tjalle Groen

Status Draft

Dissemination level Public

Reviewed by Luk Roose; Elnert Coenegrachts

Submission date December 2020

Starting date January 2019

Number of months 36

http://www.nweurope.eu/projects/project-search/ehubs-smart-shared-green-mobility-hubs/
http://www.nweurope.eu/projects/project-search/ehubs-smart-shared-green-mobility-hubs/

LTWP 6.3 An API standard for the information dashboard for users on an eHUB kiosk

3

Project partners

Organisation Abbreviation Country

Gemeente Amsterdam AMS The Netherlands

Promotion of Operation Links
with Integrated Services aisbl
(POLIS)

POLIS Europe

Taxistop asbl Taxi Belgium

Autodelen.net Auton Belgium

Bayern Innovativ GMbH BI Germany

Cargoroo CA The Netherlands

URBEE (E-bike network
Amsterdam BV)

URBEE The Netherlands

Gemeente Nijmegen NIJ The Netherlands

Transport for the Greater
Manchester

TfGM Great Britain

Stad Leuven LEU Belgium

TU Delft TUD The Netherlands

University of Newcastle upon
Tyne

UN Great Britain

Ville de Dreux DR France

Stadt Kempten (Allgäu) Kemp Germany

Universiteit Antwerpen UAntwerp Belgium

LTWP 6.3 An API standard for the information dashboard for users on an eHUB kiosk

4

Document history

Version Date Organisation Main area of
changes

Comments

0.1 30/10/2020 Taxistop First draft

0.2 06/12/2020 Taxistop Second draft Update to TOMP
v1.1

0.3 15/12/2020 Taxistop Third draft Added chapter
on the KIOSK

0.4 18/12/2020 Taxistop Final version

LTWP 6.3 An API standard for the information dashboard for users on an eHUB kiosk

5

Table of Contents

Summary sheet ... 2

Project partners .. 3

Document history ... 4

1. Introduction ... 6

2. The API – a part of the TOMP-API ... 7

3. Transport Operator classifications .. 10

a. Plannable journeys ... 10

I. Station-Based ... 10

II. Free-floating (= on Demand) .. 10

b. Predefined Transport ... 10

I. Public transport .. 10

II. Carpooling .. 10

4. Standardisation .. 11

5. Implementation requirements .. 14

a. Endpoint description .. 14

b. The endpoint breakdown ... 15

c. Compliancy with the TOMP-API definition .. 25

6. Authentication ... 26

7. The KIOSK ... 28

8. The eHUBS Consortium ... 30

LTWP 6.3 An API standard for the information dashboard for users on an eHUB kiosk

6

1. Introduction

The goal of work package long term effects, deliverable 6.3 is not only to create an API standard
for the information dashboard but also to create the first version of a KIOSK application to
showcase this API and to inform users about the Mobility options available at each eHUB.

The following document describes the API standard, defined as a subset of the TOMP-API
described and defined in work package long term effects, deliverable 6.2.

The TOMP-API is under continuous development, therefore it is recommended to keep up to
date with the latest developments of this standard especially when implementing.

This document is based on the Dragonfly 1.1 release from December 2020 and tries to paint a
complete picture, but we would like to refer to the official TOMP sources for the latest version.

To do so please follow one of the links below:

The swaggerhub:
https://app.swaggerhub.com/apis-docs/TOMP-API-WG/transport-
operator_maas_provider_api/

The wiki – blueprint:
 https://github.com/TOMP-WG/TOMP-API/wiki/Introduction

This API will be used to integrate multiple TO’s in the information dashboard for users on an
eHUB kiosk & website platform. Going forward described as the KIOSK.

LTWP 6.3 An API standard for the information dashboard for users on an eHUB kiosk

7

2. The API – a part of the TOMP-API

The TOMP-API is an interface to enable communication between Transport Operators and
MaaS Providers. Therefore this as an extensive collection of protocols covering the whole MaaS
ecosystem from both sides.
Adhering to the TOMP-API will enable near-seamless integration, sparing the burden of single
case integration for each separate TO or MP.

Within WP D6.3 we have created an API standard for the information dashboard for users on an
eHUB kiosk & website platform. From now on we can describe this as the KIOSK.

The figure below gives a quick overview of the TOMP ecosystem, the API enables complete
integration within a MaaS system, with information exchange between both parties for all
components.

Figure 1: overview of the TOMP-API – Tjalle Groen

If a transport operator wants to get ready for the full integration within MaaS a the full
implementation of the TOMP-API is recommended.
Because of the modular setup from the system, it is possible to implement only the parts
relevant for your needs.

LTWP 6.3 An API standard for the information dashboard for users on an eHUB kiosk

8

We consider the model for the levels of MaaS integration by Steve Sarina as depicted below.
The TOMP-API aims to fulfil all 4 levels of integration, the current state of development lies
between level 2: Integration of booking & payment and level 3: Integration of the service
offer.

Figure 2: 4 levels of MaaS - source: Steven
Sarasini (https://www.researchgate.net/figure/Proposed-topology-of-MaaS-including-Levels-0-

4-left-and-examples-right_fig2_320107637).

The KIOSK application focused on providing information to users. There is no booking or route-
planning foreseen within the KIOSK.
Therefore the level of integration required is Level 1: Integration of information.
This is why we will focus on the building blocks required to make this possible. The definition of
what is implemented and how this part can be used is to be described in the operator/meta
endpoint.

https://www.researchgate.net/figure/Proposed-topology-of-MaaS-including-Levels-0-4-left-and-examples-right_fig2_320107637
https://www.researchgate.net/figure/Proposed-topology-of-MaaS-including-Levels-0-4-left-and-examples-right_fig2_320107637

LTWP 6.3 An API standard for the information dashboard for users on an eHUB kiosk

9

The required blocks for the eHUBS KIOSK are:

Operation-Information: Static information on the API-owner.

Planning: Up to date (realtime when possible) information on availability, estimated travel time
and costs of assets.

Figure 3: an overview of pillars required for eHUBS integration – Tjalle Groen

LTWP 6.3 An API standard for the information dashboard for users on an eHUB kiosk

10

3. Transport Operator classifications

There are two main types of Transport Operators we consider in our system, station-based and
free-floating. They are both covered in the TOMP-API system but need a slightly different
implementation.

a. Plannable journeys

This category revolves around trips that don’t require a fixed destination and have either a fixed
or a not fixed departure point)

I. Station-Based

A physical eHUB can house a station for multiple Transport Operators, ranging from e-bikes to
EV’s. These stations will have a standard occupancy of certain vehicles and will most likely be
for round trip usage (return to the same point).

In this case, there are different options to implement this, either a full on-demand approach
where you use the planning option to look for available assets or a more static approach via the
operation information section.

II. Free-floating (= on Demand)

If a TO has different assets spread over a certain geographical area we can call this a free-
floating service. Assets do not have to be returned to a specific location, they can be left
anywhere within a (usually geofenced) area.
An interested user has to locate the asset on a map and unlock to operate.

b. Predefined Transport

There are multiple mobility options with a fixed destination & departure point.

I. Public transport
A system of vehicles such as buses and trains that operate according to a regular timetable
on fixed routes and are to be used by the general public.

II. Carpooling
Also known as ridesharing, a group of people travelling together in a car to reach a joint
destination, generally for work or school. But also very effective for leisure activities. Some
adjustments to the pre-defined ride are possible, with limitations.

LTWP 6.3 An API standard for the information dashboard for users on an eHUB kiosk

11

4. Standardisation

The TOMP-API adaptation is a work in progress for the eHUBS pilot cities. Therefore we cannot
solely rely on the API described in this document.
This problem has to be tackled by a custom implementation for certain Transport Operators,
this, of course, is very time consuming and thus expensive.

The different implementation cases can be roughly divided into two categories:

1. Public Transport & supported standards:

An eHUB cannot function without access to Public Transport data, and the process of letting
them provide their data in a TOMP-ready way is tedious and beyond our control.
Therefore there is no other way for a user to get this data directly from them by implementing
it how it is provided.
For Belgium these Operators are: NMBS/SNCB, De Lijn, TEC, STIC & MIVB.

Because of existing standards, it is possible to integrate different systems in a fairly seamless
way. These standards can be industry-driven (f.e. GTFS & GTFS-RT) or European standards like
NETEX and SIRI. The focus lies on getting as compliant as possible with the existing standards to
optimize reuse when expanding across borders.
These standards require large file transfers of the full network which need to be imported in
the database and require regular updates.

This implies a great effort, with recurring adaptations. To make this feasible an implementation
& maintenance cost is required.

2. API’s that requires custom integration

Depending on the location and the local policies there might be Operators active in an eHUB
area who have not yet implemented the TOMP-API. If they want to be connected to the eHUB
there is custom connection code writing to be done. The cost for this is to be calculated outside
the common installation/maintenance cost of eHUB itself.
An eHUB will be placed on request of the Municipality, they are thus responsible for the data
that needs to be imported.

Depending on the size and willingness to cooperate, the following scenarios are possible.

LTWP 6.3 An API standard for the information dashboard for users on an eHUB kiosk

12

• One-off integration
• Reusable Integration
• Mapping to the TOMP-API

The table below shows the pro/contra analysis of the different methods.

 Reusability Workload Benefit Desirability
TOMP-API +++ - All ++
One-off - ++ TO -
Reusable + ++ TO & eHUB +
Mapping ++ ++ TO & eHUB +

Table 1: Integration types analysis

One-off integration:

If there is a requirement to include an Operator which is only active / or wishes to be connected
into one eHUB or in one eHUB region.
The implementation is completely made-to-measure for the one region

Reusable Integration :

In most cases, we can connect a single operator to multiple eHUB-regions. This means that the
bulk of the integration only needs to be done once for multiple locations.

Mapping to the TOMP-API

Another way to handle the integration is to provide Data-Mapping to the TOMP-API.
Data mapping for an API is the process of converting (or translating) source field names into the
target field names. This also includes the documentation of any data transformation logic.

The mapping could be shared with the Transport Operator to broaden the implementation of
the TOMP-API and reinforcing the operator's strategic advantage in the MaaS ecosystem.

Across the European continent, there are multiple standards in use for communication of either
specific kinds of Mobility (ISXI for carsharing, GBFS+ for bike-sharing,…) or more general and
extensive standards like NETEX (a requirement for all major mobility operators for all European
member states) & SIRI (European choice for Real-Time exchange). There are even local
standards (OSLO in Flanders). For these standards, the same methodology of data-mapping
could be used.

LTWP 6.3 An API standard for the information dashboard for users on an eHUB kiosk

13

With one effort per standard, we could include all Transport Operators adhering to this
standard in a relatively simple manner.

Conclusion:

When no other options remain, custom integration will prove to be inevitable.
If this is the case however we should strive for maximum reusability. This can be done by
adding one operator to multiple eHUBS or by working together with the Transport to create a
mapping they can use for further projects. The choice is to be made per Operator or Standard.

LTWP 6.3 An API standard for the information dashboard for users on an eHUB kiosk

14

5. Implementation requirements

In this chapter, we will take a deeper look into the specifics of the standards and how they are
to be implemented.
Warning: this part contains code, it’s not scary by necessary for this part.

As determined in chapter three there are a few different approaches to implementation
possible, this depends on the type of service ran by a Transport Operator.

What we are displaying here are the minimum implementation guidelines for TOMP
implementation so they can be integrated within the digital side of the eHUBS project in the
most automated fashion. It is highly recommended though to study the TOMP-API’s online
documentation for the most up to date version. The implementation is not limited to what is
described in this document.

a. Endpoint description

The endpoints needed for implementation are :

Operator Information:

GET /operator/meta

This endpoint describes the meta-information of what about the extent of TOMP-API readiness.
A description of all the endpoints that are available.

GET /operator/information

This endpoint describes the Operator itself and the requirements for booking/planning.

GET /operator/stations

An overview of available stations for asset pickup.

GET operator/available-assets

The endpoint providing available assets at a certain station/location. This is a near real-time
endpoint, the information needs to be up to date.

Planning

POST /plannings

LTWP 6.3 An API standard for the information dashboard for users on an eHUB kiosk

15

The planning endpoint forms the exploration phase of a trip. The perfect place to search for
real-time availability of specific assets.

The table below overviews which endpoint is required per type of integration. The top side lays
out the endpoints, this left side the types of integration.

 operator
/meta

operator
/information

operator
/stations

operator
/available-assets plannings

On-demand x x x

Station based x x x x

Combination x x x x x

Table 2. Required endpoints per integration type

b. The endpoint breakdown

We will start with a breakdown JSON result of the different endpoints.

GET /operator/meta

Example JSON response:

{
 "version": "1.0.0",
 "baseUrl": "https://your-api.org/",
 "endpoints": [{
 "method": "POST",
 "path": "/plannings/",
 "status": "IMPLEMENTED"
 },
 {
 "method": "GET",
 "path": "/operator/meta",
 "status": "IMPLEMENTED"
 },
 {
 "method": "GET",
 "path": "/operator/information/",
 "status": "IMPLEMENTED"
 }
],
 "scenarios": [
 "POSTPONED_COMMIT"

LTWP 6.3 An API standard for the information dashboard for users on an eHUB kiosk

16

],
 "processIdentifiers": {
 "planning": [
 "PLANNING_BASED"
]
 }
}

• version: the current version of the API you are offering
• baseURL: the URL where the endpoints need to be called
• endpoints: a list of the available endpoints

o method: the HTTP method required to call the function
o path: the path of the webservice call, to be used in combination with the

baseURL
o status: current state of implementation

 IMPLEMENTED – ready to use
 NOT_IMPLEMENTED – this endpoint is not available
 PLANNED – not available yet, but will be in the future.

• scenarios:
• processIdentifiers:

o planning: the planning identifier
 PLANNING_BASED
 ASSET_BASED

GET operator/information

{
 "systemId": "XXTO0001",
 "language": [
 "fr-FR"
],
 "name": "FreeBike",
 "shortName": "FB",
 "operator": "FreeBike",
 "url": "https://www.rentmyfreebike.com",
 "purchaseUrl": "https://www.rentmyfreebike.com/purchase",
 "startDate": "2020-11-16",
 "phoneNumber": "555-12345",
 "email": "rent@freebike.com",
 "timezone": "IST",
 "licenseUrl": "https://www.rentmyfreebike.com/license",
 "typeOfSystem": "FREE_FLOATING",
 "chamberOfCommerceInfo": {
 "number": "string",
 "place": "string"
 },
 "conditions": "string",
 "productType": "RENTAL",
 "assetClasses": [
 "AIR"

LTWP 6.3 An API standard for the information dashboard for users on an eHUB kiosk

17

]
}

• systemID: Globally unique identifier for the Transport Operator
• language: a list of supported languages – these can be requested with the Accept-

Language header
• name: Name of the organisation (Should match Content-Language)
• shortName: The preferred short name for your organisation.
• operator: the name of the operator (can be different from the organisation name)
• URL: the fully qualified URL of the Transport Operator (must include HTTP/HTTPS)
• purchaseUrl: the fully qualified URL for booking/membership
• startDate: YYYY-mm-dd – when did you start operating
• phoneNumber: the full (including country code) phone number of your operations
• email: contact email address
• timezone: the timezone you are operating in (EST – European Standard Time)
• licenseUrl: Possible licensing information (fully qualified URL)
• typeOfSystem

o FREE_FLOATING
o STATION_BASED

• conditions: possible conditions for booking
• productType: what kind of product are you offering

o RENTAL: one person/group use of the asset
o SHARING: If the asset is shared with others, f.e. Carpool, public transport, …

POST plannings

Planning is a POST call, indicating information is being transferred when doing the request. This
is done via a JSON body.
For the purpose of the eHUBS KIOSK API the query parameter: booking-intent = false is
required.
Note that this JSON body does not use all (non required) parameters used in the TOMP-API
description, this is because that information is not in use for this operation to run.

POST https://exampleTO.com/plannings/?booking-intent=false
{
 "from": { "coordinates": { "lng": 6.169639,"lat": 52.253279} },
 "radius": 100,
 "startTime": "2020-06-24T07:12:03.000Z",
}

• from: the departure coordinates, in LNG,LAT format. This is the actual location of the
eHUB.

https://exampleto.com/plannings/?booking-intent=false

LTWP 6.3 An API standard for the information dashboard for users on an eHUB kiosk

18

• radius: the radius around the eHUB that a user is prepared to travel in meters.
• startTime: time when the rental starts, default is now.

The response :

{
 "validUntil": "2020-12-31T15:38:42.941Z",
 "options": [{
 "id": "string",
 "from": {
 "name": "string",
 "stationId": "string",
 "coordinates": {
 "lng": 6.169639,
 "lat": 52.253279
 },
 "physicalAddress": {
 "streetAddress": "example street 18, 2nd floor, 18-B33",
 "areaReference": "Smallcity, Pinetree county",
 "postalCode": "string",
 "country": "NL"
 }
 },

 "state": "NEW",
 "legs": [
 {
 "id": 1234abc
 "from": {
 "lat": "50.86453",
 "lng": "4.68077"
 },
 "to": {
 "lat": "50.99763",
 "lng": "4.753283"
 },
 "departureTime": "2020-12-06T14:38:42.942Z",
 "arrivalTime": "2020-12-06T14:38:42.942Z",
 "assetType": {
 "type": "carpool",
 "name": "Carpool to: Tremelo",
 "assetClass": "OTHER",
 "assetSubClass": "Carpool",
 "co2-per-km": 110,
 "smoking": false,
 "persons": 2
 },

 "asset": {
 "assetId": "672643/8371920",
 "name": "Bart",
 "image":
"https://www.carpool.be/pics/users/avatars/avatar003.png",
 "rentalUrl":
"https://www.carpool.be/rides/ad/672643/8371920?sj=eyJzdGF0dXMiOiJPSyIsInByZWYiOiIyIiwiZnJvbSI
6eyJsYXQiOjUwLjg2MjgxMiwibG9uIjo0LjY5NTQ4OSwiY291bnRyeSI6IkJFIiwiY2l0eSI6IkxldXZlbiIsInBvc3Rhb
CI6IjMwMDEiLCJzdHJlZXQiOiJQcmlucyBEZSBMaWduZXN0cmFhdCJ9LCJ0byI6eyJjb3VudHJ5IjoiQkUiLCJjaXR5Ijo

LTWP 6.3 An API standard for the information dashboard for users on an eHUB kiosk

19

iVHJlbWVsbyIsInBvc3RhbCI6IjMxMjgiLCJzdHJlZXQiOiJBYW4gZGUgQmVyZyIsImxhdCI6NTAuOTk3NjMsImxvbiI6N
C43NTMyODN9fQ==",
 "place": {
 "physical-address": {
 "address": "Aan de Berg",
 "city": "Tremelo",
 "postalCode": "3128",
 "country": "BE",
 "type": "destination"
 }
 }
 },
 "pricing": {
 "estimated": true,
 "description": "The price may vary when booking,
this is the price for the total ride of the driver.",
 "class": "carpool_price",
 "parts": [{
 "name": "Price traject driver",
 "amount": 2.2,
 "currencyCode": "EUR",
 "type": "FIXED",
 "unitType": "KM",
 "class": "carpoolPriceDriver"
 }]
 }
 }
]
 }]
}

• validUntil: How long is this result valid
• options: a list of travel options for the request

o id: A unique ID for the presented option
o from: Departure point
o state: The current state of this options
o legs: A list of legs within the result

 id: Unique ID for the journeyleg
 from: Departure point
 to: Arrival point
 assetType:

• Id: Unique ID to identify this result
• stationId: Unique identifier for the station
• nrAvailable: Total number of assets available at the station
• assets: A description of the assets

o Id: A unique identifier for the asset
o isReserved: A boolan to indicate if the asset is reserved or

not
o isReservedFrom: If reserved a full date with timezone
o isReservedTo: If reserved a full date with timezone

LTWP 6.3 An API standard for the information dashboard for users on an eHUB kiosk

20

o isDisabled: Is the asset in use (fe. In case of maintenance)
o overriddenProperties: A list of properties that are

different then the ones provided in the sharedProperties
field for the station
 name: a name for the asset
 location: a location for the asset
 rentalUrl: a direct URL where the asset can be

booked.
 co2perKm: co2 usage per km
 persons: Number of people who can use the asset
 image: an image url
 …

• assetClass: The asset class, derived from the NETEX standard.
AIR, BUS, TROLLEYBUS, TRAM, COACH, RAIL, INTERCITYRAIL,
URBANRAIL, METRO, WATER, CABLEWAY, FUNICULAR, TAXI,
SELFDRIVE, FOOT, BICYCLE, MOTORCYCLE, CAR, SHUTTLE, OTHER,
PARKING, MOPED, STEP

• assetSubClass: In the case of OTHER as assetClass – specify the
class here.

• sharedProperties: a list of properties shared among the available
assets at the station

Note: these calls & responses only hold the information required for our purposes, check the
latest version of swaggerhub for a full overview of possible values.

GET operator/stations

Query parameters:

• coordinates: (optional) – a string in the format: "coordinates": { "lng": 6.169639,"lat":
52.253279} of the location of the eHUB.

• radius: (optional) – a radius in meters where the stations should be located
• Offset: default 0 (paging is supported from v1.1 – the start of result)
• Limit: default 20 (paging is supported from v1.1 – the maximum number of results)

Note: coordinates & radius are an extension on the TOMP-API (v1.1) – a request to make this
part of the full API has been made.

The response :

LTWP 6.3 An API standard for the information dashboard for users on an eHUB kiosk

21

[{
 "stationId": "XX:Y:12345678",
 "name": "Island Central",
 "coordinates": {
 "lng": 6.169639,
 "lat": 52.253279
 },
 "physicalAddress": {
 "streetAddress": "example street 18, 2nd floor, 18-B33",
 "areaReference": "Smallcity, Pinetree county",
 "postalCode": "string",
 "country": "BE"
 },
 "crossStreet": "on the corner with Secondary Road"
}]

• stationId: Unique identifier for the station
• name: Name of the station (Should match Content-Language)
• coordinates: The location of the station(entrance) in LNG/LAT format)
• physicalAddress: The full address of the station (Should match Content-Language)
• crossStreet: Extra info on how to find the station. (Should match Content-Language)

GET operator/available-assets

In order to get this information we need to know the station ID of the station closest to the
eHUB. This is requested from the /stations call.

Query parameters:

• stationId: the stationId where the assets are being requested.
• Offset: default: 0 (paging is supported from v1.1 – the start of result)
• Limit: default 20 (paging is supported from v1.1 – the maximum number of results)

The response :

[{
 "id": "string",
 "stationId": "string",
 "nrAvailable": 0,
 "assets": [{
 "id": "string",
 "isReserved": false,
 "isReservedFrom": "2020-12-06T15:07:14.645Z",
 "isReservedTo": "2020-12-06T15:07:14.645Z",
 "isDisabled": false,
 "overriddenProperties": {
 "name": "string",
 "location": {
 "name": "string",
 "stationId": "string",
 "coordinates": {
 "lng": 6.169639,

LTWP 6.3 An API standard for the information dashboard for users on an eHUB kiosk

22

 "lat": 52.253279
 },
 "physicalAddress": {
 "streetAddress": "example street 18, 2nd floor,
18-B33",
 "areaReference": "Smallcity, Pinetree county",
 "postalCode": "string",
 "country": "NL"
 },
 "extraInfo": {
 "additionalProp1": {}
 }
 },
 "fuel": "NONE",
 "energyLabel": "A",
 "co2PerKm": 0,
 "brand": "string",
 "model": "string",
 "travelAbroad": true,
 "airConditioning": true,
 "cabrio": true,
 "colour": "string",
 "cargo": "string",
 "easyAccessibility": "LIFT",
 "gears": 0,
 "gearbox": "MANUAL",
 "image":
"https://files.fietsersbond.nl/app/uploads/2014/10/30151126/ST2_Men_Side_CityKit-Stromer.jpg",
 "infantSeat": true,
 "persons": 0,
 "pets": true,
 "propulsion": "MUSCLE",
 "smoking": false,
 "stateOfCharge": 0,
 "towingHook": true,
 "undergroundParking": true,
 "winterTires": true,
 "other": "string",
 "meta": {
 "additionalProp1": {}
 }
 }
 }],
 "assetClass": "AIR",
 "assetSubClass": "string",
 "sharedProperties": {
 "name": "string",
 "location": {
 "name": "string",
 "stopReference": [{
 "type": "GTFS_STOP_ID",
 "id": "string",
 "country": "NL"
 }],
 "stationId": "string",
 "coordinates": {
 "lng": 6.169639,
 "lat": 52.253279
 },
 "physicalAddress": {
 "streetAddress": "example street 18, 2nd floor, 18-B33",

LTWP 6.3 An API standard for the information dashboard for users on an eHUB kiosk

23

 "areaReference": "Smallcity, Pinetree county",
 "postalCode": "string",
 "country": "NL"
 },
 "extraInfo": {
 "additionalProp1": {}
 }
 },
 "fuel": "NONE",
 "energyLabel": "A",
 "co2PerKm": 0,
 "brand": "string",
 "model": "string",
 "buildingYear": 0,
 "travelAbroad": true,
 "airConditioning": true,
 "cabrio": true,
 "colour": "string",
 "cargo": "string",
 "easyAccessibility": "LIFT",
 "gears": 0,
 "gearbox": "MANUAL",
 "image":
"https://files.fietsersbond.nl/app/uploads/2014/10/30151126/ST2_Men_Side_CityKit-Stromer.jpg",
 "infantSeat": true,
 "persons": 0,
 "pets": true,
 "propulsion": "MUSCLE",
 "smoking": true,
 "stateOfCharge": 0,
 "towingHook": true,
 "undergroundParking": true,
 "winterTires": true,
 "other": "string",
 "meta": {
 "additionalProp1": {}
 }
 }
}]

• Id: Unique ID to identify this result
• stationId: Unique identifier for the station
• nrAvailable: Total number of assets available at the station
• assets: A description of the assets

o Id: A unique identifier for the asset
o isReserved: A boolan to indicate if the asset is reserved or not
o isReservedFrom: If reserved a full date with timezone
o isReservedTo: If reserved a full date with timezone
o isDisabled: Is the asset in use (fe. In case of maintenance)
o rentalUrl: a direct URL where the asset can be booked.
o overriddenProperties: A list of properties that are different than the ones

provided in the sharedProperties field for the station
• assetClass: The asset class, derived from the NETEX standard.

AIR, BUS, TROLLEYBUS, TRAM, COACH, RAIL, INTERCITYRAIL, URBANRAIL, METRO,

LTWP 6.3 An API standard for the information dashboard for users on an eHUB kiosk

24

WATER, CABLEWAY, FUNICULAR, TAXI, SELFDRIVE, FOOT, BICYCLE, MOTORCYCLE, CAR,
SHUTTLE, OTHER, PARKING, MOPED, STEP

• assetSubClass: In the case of OTHER as assetClass – specify the class here.
• sharedProperties: a list of properties shared among the available assets at the station

Headers

For both incoming and outgoing requests, certain header parameters are required and are
important for the handling of the request.

Incoming request headers:

Accept-Language: nl, en;q=0.8 … (A comma-separated list of BCP 47 (RFC 5646) language tags and
optional weights as described in IETF RFC7231 section 5.3.5)
Api: TOMP
Api-Version: 1.1 (The version of the TOMP-API you have implemented. 1.1 is the latest version
at the time of this document).

Outgoing request headers:

Content-Language: nl (a BCP 47 (RFC 5646) language tag)

All language dependant content should be served in the language served in this tag.

Error handling

In all forms of digital communication, error handling is one of the keystones for success.

It is pertinent to use the correct HTTP error codes as described in section 10 of RFC2616:
https://tools.ietf.org/html/rfc2616#section-10

A typical error response body is to be implemented as follows:

{ "errorcode": 0,
 "type": "string",
 "title": "string",
 "status": 0,
 "detail": "string"}

• errorcode: a TOMP specific error code, see below for details.
• type: Type of error

https://tools.ietf.org/html/rfc2616#section-10

LTWP 6.3 An API standard for the information dashboard for users on an eHUB kiosk

25

• title: a short human-readable description of the error, should be in the language
specified in the Content-Language header.

• status: The HTTP status code ([RFC7231], Section 6)
• detail: a human-readable long(er) description of the problem, should be in the language

specified in the Content-Language header.

Possible error codes for the eKA:

Code Endpoint Type Title Description
1001 operator Missing Field: {}, Reason: {}
2002 plannings
1002 operator Invalid Field: {}, Reason: {}
2002 plannings
1004 operator Illegal operation Operation {} is illegal in

current status.

2004 plannings
1005 operator Technical issue Internal technical problem,

contact support.

2005 plannings
1006 operator Technical issue No access to the endpoint Using the

authentication
provided, this endpoint
cannot be used.

2006 plannings

1007 operator Technical issue Request limit You've reached the
maximum amount of
requests per time
period.

2007 plannings

1008 operator Technical issue Unsupported API-version The version of the API
you're trying to use is
not supported. 2008 plannings

Table 3: TOMP-API error codes overview.

c. Compliancy with the TOMP-API definition

The TOMP-API workgroup is working on defining the compliancy levels for TOMP-API
integration based on the Sarasini model explained in chapter 2.

The eHUBS kiosk API falls in Level 1: Integration of information.

For implementation purposes, we don’t strictly require the endpoints – GET regions, GET
operating-calendar, GET operation-hours and GET pricing-plans.
It is however recommended to follow the standard guidelines (for reusability by other partners

LTWP 6.3 An API standard for the information dashboard for users on an eHUB kiosk

26

to start with), therefore it is advised to provide this information by the endpoints stated.
This is mainly static information and does not require great effort on the PT’s part.

The image below depicts the different levels of implementation and the endpoints related to
each compliance level as laid out by the TOMP-WG when writing this document.

Figure 4: The compliancy levels for Transport operators in the TOMP-API – TOMP working
group.

The TOMP-API documentation is the favoured source of information on the specific endpoints
and the implementation thereof.

6. Authentication

Each connection and webservice call needs to be authenticated to ensure a safe transfer of
data. The level and method of security are dependent on the internal structure and preferences
of each company. Therefore we cannot make one form an obligation.
The 3 methods we plan to support are:

Basic Authentication:

The most basic form of authentication built into the HTTP protocol. Each HTTP request is sent
with an Authorization header. This header value contains the word Basic followed by a space
and a base64 encoded string containing (username: password).
The result looks like follows:

Basic: dXNlcm5hbWU6IHBhc3N3b3Jk

Basic Authentication should only be used over an HTTPS/SSL connection because the base64

LTWP 6.3 An API standard for the information dashboard for users on an eHUB kiosk

27

encoding can easily be decoded. Communication over the HTTPS protocol prevents external
parties to hijack the communication to read this header.

oAuth 2.0

OAuth 2.0 is a standard for handling authentication among web-enabled devices and servers.
OAuth 2.0 focuses on client developer simplicity while providing specific authorization flows for
different types of applications and devices.

This method of login is used by Google, Facebook, Twitter to connect to their API’s and to
enable third party login for many websites.

OAuth 2.0 is the recommended method of authentication by the TOMP-WG.

JWT Webtoken

JWT web tokens is an open standard for authentication where server-generated JSON objects
(tokens), valid for a short period in time, are exchanged and used for verification of access.
This information can be verified and trusted because it is digitally signed.

A JWT token contains the following information:

1. Header: This part contains the metadata, containing the signing method and the
encryption method applied to the token.

2. Payload: Contains information about the authenticated user.
3. Signature: The last part is of course very important, by signing the token you verify that

what is stated above is true and unaltered.

This whole token gets base64 encoded, therefore this should always be sent over a secure
HTTPS/SLL connection.

More information: https://jwt.io/introduction/

https://jwt.io/introduction/

LTWP 6.3 An API standard for the information dashboard for users on an eHUB kiosk

28

7. The KIOSK

The information KIOSK application aims to inform users about the intermodal mobility offerings
available near the eHUB location. The application can be accessed from a digital eHUB pillar
from a touchscreen interface.
The image below de gives an overview of the looks and some functionalities.

Figure 5: a collection of screenshots/designs – IPR (BE)

While not in use the passing people see an image carousel with room for city marketing and
general information on the eHUB.
Once a user engages with the pillar a dashboard appears, providing a variety of mobility
offerings. Depending on the location of course a variety of Mobility resources is shown.
This can range from Public Transport (Trains, Buses,…) to shared mobility offerings (car- & bike-
sharing, e-scooters,…)
Additionally, there is room for information on the location, the vicinity, the surroundings. This
can be in the form of a map, text or touristic information.
The schema below depicts the different available options.

LTWP 6.3 An API standard for the information dashboard for users on an eHUB kiosk

29

 Figure 6: a schematic overview of the KIOSK application

LTWP 6.3 An API standard for the information dashboard for users on an eHUB kiosk

30

The sole responsibility for the content of this document lies with the authors. It does not necessarily reflect the opinion of the
European Union. Neither Interreg North-West Europe nor the European Commission are responsible for any use that may be
made of the information contained therein.

8. The eHUBS Consortium

The consortium of eHUBS consists of 15 partners with multidisciplinary and complementary
competencies. This includes European cities, leading universities, networks and electric and
shared mobility providers.

@eHUBS_NWE
#eHUBS
https://www.linkedin.com/groups/13711468/

For further information please visit http://www.nweurope.eu/ehubs

https://www.linkedin.com/groups/13711468/
http://www.nweurope.eu/ehubs

	Summary sheet
	Project partners
	Document history
	1. Introduction
	2. The API – a part of the TOMP-API
	3. Transport Operator classifications
	a. Plannable journeys
	I. Station-Based
	II. Free-floating (= on Demand)
	b. Predefined Transport
	I. Public transport
	II. Carpooling

	4. Standardisation
	One-off integration:
	Reusable Integration :
	Mapping to the TOMP-API

	5. Implementation requirements
	a. Endpoint description
	b. The endpoint breakdown
	GET /operator/meta
	GET operator/information
	POST plannings
	GET operator/stations
	GET operator/available-assets
	Headers
	Error handling

	c. Compliancy with the TOMP-API definition

	6. Authentication
	7. The KIOSK
	8. The eHUBS Consortium

