

A workflow for landfill characterization using geophysics and targeted sampling

Re-us

David Caterina², Jonathan Chambers¹, Ben Dashwood¹, Cornelia Inauen¹, Itzel Isunza Manrique², Frederic Nguyen², Arnaud Watlet¹

> ¹ British Geological Survey, Nottingham, UK, ² University of Liege, Urban and Environmental Engineering, Belgium

> > RAWFILL

A short introduction to geophysics

"The subsurface site characterization of the geology, geological structure, groundwater, contamination, and human artifacts beneath the Earth's surface, based on the lateral and vertical mapping of physical property variations that are remotely sensed using non-invasive technologies" (EEGS 2018)

Why geophysics for landfill characterization?

Traditional approach: drilling – sampling - analysis

Combine geophysics with traditional techniques *How?*

Principle 1:

combine complementary geophysical methods and plan the geophysical survey based on a-priory site information

Principle 1: combine complementary geophysical methods

Principle 1: combine complementary geophysical methods

Principle 2: targeted sampling

- Lower costs
- Reduced risk of damaging structures
- Reduced risks of contamination or exposure to hazardous materials

Pros and cons

- Non to minimally invasive
- Relatively low cost
- Large coverage
- See through technology

- Indirect information
- Resolution decreases with depth
- Prone to modeling errors (artefacts)
- Ambiguity

Proposed workflow

• Gather and summarize all available information

 \rightarrow Build conceptual model

Short recap on the geophysical methods

Mapping methods

Mapping methods: Electromagnetic induction (EMI)

Mapping methods: Magnetics Magnet omaly В D n and the company of the second state of the second state of the second state of the second state of the second en alter and an terrar an en delta alterna. CARLENA STATE OF THE STATE OF Earth magnetic field

Parameters measured:

- Earth's magnetic field intensity
- Magnetic susceptibility

Sensitive to:

- Metallic items
- Metal content

Mapping methods: Magnetics

RAWFILL

Profiling methods: Electrical Resistivity Tomography (ERT) / Induced Polarisation (IP)

Target properties

Parameters measured:

- Electrical resistivity (ERT)
- Chargeability (IP)

Sensitive to:

- Leachate/water content
- Pore fluid composition
- Metal content
- Size and shape of grains/pore space
- Connectivity of pores

Profiling methods: ERT/IP

Profiling methods: Seismics

Active seismic

Target properties

Parameters measured:

 propagation velocity of seismic waves

Sensitive to:

 ground stiffness, elasticity and density (mineral content, lithology, porosity pore fluid saturation and degree of compaction)

Profiling methods: Seismics

Interreg EUROPEAN UNION North-West Europe RAWFILL European Regional Development Fund

v1

Active seismic

Refraction seismics (SRT)

Multi-channel Analysis of Surface Waves (MASW)

Profiling methods: Seismics

High resolution mapping : from resource to reserve, a case study from NWE

Re-us

David Caterina², Jonathan Chambers¹, Ben Dashwood¹, Cornelia Inauen¹, Itzel Isunza Manrique², Frederic Nguyen², Arnaud Watlet¹

> ¹ British Geological Survey, Nottingham, UK, ² University of Liege, Urban and Environmental Engineering, Belgium

> > RAWFILL

RAWFILL methodology applied to a real case study: Emerson's Green (UK)

Case study: Emerson's Green (UK)

- Location: UK, near Bristol
- Excavated for new housing in 2019

Case study: Emersons Green

- Location: UK, near Bristol
- Excavated for new housing in 2019
- → ground truth data to calibrate geophysics

Step 1) Information gathering

Archives & inventory report

Desk study

- Historical reports
- Aerial photography archives
- Maps

Site visits

- Interview with land owner, local authorities etc.
- Walk over survey: changes in vegetation, topography etc.

Landfill size: 23,000m²

Landfill operation (1984 – 1991)

- Inert & industrial/commercial waste
- Dilute & disperse basis

Geology:

- North: Mudstone
- South: Sandstone
- East: historic quarry

Step 1) Information gathering: Ground truth data

Ground truth data available across site:

• 59 Trial pits

Archives &

inventory report

• 12 Boreholes

	Name	Thickness
Cap	Clay cap	up to 2.6m average: 1.1m
Waste material	Municipal solid waste (MSW)	min: 0.3m max: > 4.1m
	Municipal solid waste (MSW) + inert content	min: 0.6m max: > 3.4m
	Quarry backfill	0.7m to 2m
Host	Clay	-
	Mudstone	-
	Sandstone	-

Step 1: Identification of knowledge gaps

- Geophysical characterization
- Waste thickness unknown towards centre of landfill
 → difficult to estimate waste volume
- Structure of landfill unclear.
 Is there a change in waste composition towards East?

\rightarrow Use geophysics to fill these knowledge gaps

RAWFILL

Step 2) Geophysical characterisation: Planning

Site conditions

Geophysical characterization

Calibration & validation

Top soil stripped off (about 30cm)

In some places waste visible

High groundwater table

→ Site well accessible for all geophysical measurements

Step 2) Geophysical characterisation: Selecting methods

Archives &

inventory report

Indracterization

Calibration & validation

MAPPING METHODS

Goal: • Improve knowledge of lateral landfill geometry

> Delineate zones of different waste composition

Electromagnetics

Lateral extent Metallic items Metal content

Lateral extent Leachate content Metal content

PROFILING METHODS

Waste types Leachate content Thickness of landfill Layers of different stiffness Thickness of landfill

RAWFILL

Step 2) Geophysical characterisation: Measurement extent

Geophysical characterization

Magnetics

EM: depths: 1.5m, 2.5m, 3m, 6m ERT/IP and MASW

Step 2) Geophysical characterisation:

Archives & inventory report

Geophysical characterization

Cell type structure?

Step 2) Geophysical characterisation: Results MASW

Low velocities correspond to waste layer

Archives &

inventory report

Geophysical characterization

Archives & inventory report

Step 3) Calibration and Validation

Additional ground truth data through excavations

Geophysical characterizatio

Calibration & validation

- The landfill was separated into three cells. These cells were excavated into the natural clayey ground and filled with waste.
- A thicker clay cap and a thinner waste layer was found in cell 3.
- A step in the landfill base between cells 2 and 3 might be associated with the underlying sandstone.

The waste composition was a mix of plastic, metal, wood, paper, fabric, inert with no strong compositional changes across the site.

clay cap thickness

base of waste layer

clay stank dividing the waste cells

Step 3) Calibration and Validation

Archives &

inventory report

Calibration & validation

EM: good delineation of waste cell extent and cover layer thickness

Lower conductivities of cell 3 are probably associated with a thicker cover layer and a thinner waste layer

Step 4) Building Resource Distribution Model

Archives &

inventory report

Take-home message

Using geophysics:

- is cost effective
- allows targeted sampling
- delivers relatively high resolution data (when mapping and profiling techniques are combined)

Our proposed workflow:

- integrates a priori information, geophysics and targeted sampling to build a resource distribution model specific to each landfill
- Provides "ready-to-use" information for decision makers (DST 2)

nterreg EUROPEAN UNION **North-West Europe** RAWFILL

European Regional Development Fund

Co-funded by the Walloon region

Thank you!

Raw materials recovered from landfills

The Interreg North-West Europe Project is coordinated by SPAQuE and unites 8 partners from 4 EU regions.

