

Principles, targeted properties and examples of geophysical methods applied in landfills

ULiege & BGS

	122	Mapping				Profiling			
		EMI	MAG	ERT	IP	MASW	SRT	GPR	HVSRN
Landfill structure	Lateral extent	Ų							
	Cover Layer thickness			Î					
	Vertical extent								
	Utilities								
Landfill	Waste zonation	<u>J</u>							
characterization	Leachate content								
Environmental	Geology								
conditions	Groundwater table								
Staff required for survey		ţţ	Ţ	ţţ	苁	!	XX X	ţ	ţ
Required time for survey		(3)	(1)	(3(3)	99	COD	8	(3)	(<u>T</u>)
Required time for processing		(<u>b</u>	(1)	(B(B)	(5(5)	CCC	99	99	(5)

Mapping methods

- They can provide a wide spatial coverage
- Relatively easy to deploy and acquire data

Introduction to Magnetometry

Basic principle

Glatzmaier-Roberts geodynamo model

Schematic representation of the invisible magnetic field lines

For example, in Liege (Belgium)

Magnetic Field												
Model Used:	IGRF2020											
Latitude:	50° 38' 43" N											
Longitude:	5° 34' 21" E						0					
Elevation:	0.0 km Mean Sea	Level										
Date	Declination (+ E - W)	Inclination (+ D - U)	Horizontal Intensity	North Comp (+ N -S)	East Comp (+ E - W)	Vertical Comp (+ D - U)	Total Field					
2020-02-25	1° 57' 1"	66° 2' 7"	19,850.6 nT	19,839.1 nT	675.6 nT	44,659.0 nT	48,872.0 nT					
Change/year	0° 11' 10"/yr	0° 0' 44"/yr	10.2 nT/yr	8.0 nT/yr	64.8 nT/yr	48.5 nT/yr	48.5 nT/yr					

^{*}National Centers for Environmental Information –National Oceanic and Atmospheric Administration (NOAA)

The magnetometry method aims to find disturbances in the Earth's magnetic field

Magnetic disturbances?

Weak, negative magnetic susceptibility of around -10^{-6} à -10^{-5} SI

Magnetic disturbances?

External magnetic field

Material paramagnetic (e.g. aluminium, sodium, lithium...)

Induced magnetization

Weak, positive magnetic susceptibility of around 10⁻⁵ à 10⁻³ SI

Magnetic disturbances?

Large magnetic susceptibility of around 50 à 10⁴ SI

Magnetic disturbances ?

Data acquisition

RAWFILL 11

RAWFILL 12

Targeted property

Qualitative

Display the magnetic field values, the magnetic gradient or total field magnetic anomaly

Quantitative

Model and/or invert the data to estimate magnetic susceptibility

Magnetic susceptibilty model. Duff & Kellogg, 2019.

Magnetic susceptibility of MSW → 0.06-0.12 SI (Vollprecht et al., 2019; Appiah et al., 2018)

Lingreville landfill

Waste lateral extension

Pros and cons

Advantages

- Relatively easy to deploy in the field
- Rapid spatial coverage
- Can detect magnetic objects (e.g. drums)
- Can detect landfill boundaries

Limitations

- Infrastructure of the site (e.g. fences, excavators, utilities) can interfere with the measurements
- Quantitative interpretation not trivial

Introduction to Electromagnetic induction (EMI)

Frequency-domain

ULiege & BGS

Principles and acquisition

RAWFILL 1

Coil configuration

Depth of investigation (DOI)

Skin depth

$$\delta = \sqrt{\frac{2}{\mu_0 \omega \sigma}}$$

Depth of penetration dependent on:

- Frequency of transmitted electromagnetic wave
- conductivity of the subsurface

For a separation **s** between **Tx** and **Rx**, the induction number

$$\beta = \sqrt{\frac{s}{\delta}} \ll 1$$

As a rule of thumb:

- DOI ~ 1.5s HCP
- DOI ~ 0.75s VCP
- DOI ~ 0.5s PRP

Onoz landfill

Pros and cons

Advantages

- Rapid spatial coverage
- Can detect areas of increased leachate content and/or metallic scrap content
- Can detect landfill boundaries, geometry and structure (layering) of a landfill
- Multiple receiver coils can be used simultaneously

Limitations

- Infrastructure of the site (e.g. fences, excavators, utilities) can interfere with the measurements
- High electrical conductivity limits
 depth of investigation which may be
 problematic in landfills as organic
 waste, metal scraps or leachate have
 large values of electrical conductivity

Thank you!

Raw materials recovered from landfills

The Interreg North-West Europe Project is coordinated by SPAQuE and unites 8 partners from 4 EU regions.

RAWFILL 24