

Geophysical techniques Introduction to Seismic methods

ULiege & BGS

RAWFILL

Seismic methods North-West Europe **Application on landfills** RAWFILL Profiling Active Passive

9

	Mapping				Seismics			Seismics			
		EMI	MAG	ERT	IP	MASW	SRT	GPR	HVSRN	SP	GRA
Landfill structure	Lateral extent										
	Cover Layer thickness										
	Vertical extent										
	Utilities										
Landfill characterization	Waste zonation										
	Leachate content										
Environmental conditions	Geology										
	Groundwater table										
Staff required for survey		<u>†</u> †	Ť	ţţ	大大	† ††		Ţ	Ť	ţţ	Ť
Required time for survey		Ð	\odot	ŒÐ	œ	CUD		\odot	G	UD	UU
Required time for processing		⊕	\odot	Œ	Œ	TT	- CE	QC	Ġ	Œ	ŒÐ

Co-funded by the Walloon region

What is studied?

 \rightarrow propagation (velocity) of seismic waves

What is a seismic wave?

"Seismic waves are pulses of strain energy that propagate in solids and fluids." (Knoedel et al. 2007)

Seismic methods What is studied?

propagation velocity of seismic waves

relevant physical properties: ground stiffness, elasticity and density

Types of waves

Body waves Pass through the bulk of a medium

Surface waves VV

Travel along the ground surface

different velocities and amplitudes

(Stein and Wysession, 2003)

https://www.bgs.ac.uk/discoveringGeology/hazards/earthquakes/seismicWaves.html

Seismic velocities

Seismic velocity depends on the **bulk density** and the **elastic properties** and **varies with mineral content, lithology, porosity pore fluid saturation and degree of compaction**.

Active Seismic methods

Looking at different propagation "paths"

Refraction seismics (SRT)

- The processing steps for the two methods are different
- Result looks similar but are often given as different velocities.

Body waves (P and S)

Multi-channel Analysis of Surface Waves (MASW)

Active Seismic methods

Example results

Active Seismic methods

Basic data processing

1) Assign survey geometry and check field record

Challenges: Noise

High noise levels could mask the target signal

Plan a seismic survey such that potential noise sources can be limited to a minimum

Sources of noise

RAWFILL

Resolution and investigation depth

Co-funded by the

Seismic refraction:

Areas with low ray coverage are poorly resolved

→ Requires an adequate survey design

Depth of investigation: About 5 to 10 times of profile length

MASW:

Geophone spacing defines the minimum detectable layer thickness

Depth of investigation: About half the wavelength of the recorded lowest frequency surface wave. For landfills this is often about 15m.

A seismic survey needs to be designed in accordance with the required depth coverage and expected subsurface heterogeneities

Passive Seismic method: H/V

Basic principle and acquisition

By recording seismic ambient noise, this method aims to estimate the dominant frequency induced by local layering of stratigraphy (Piña-Flores et al., 2017).

SEISMOMETER

SET ON THE SURFACE

Data processing/ interpretation

Example results

1) Bertrix landfill- MASW model & HVSRN

Proved useful to estimate the thickness of the waste

Vs (m/s)

- HVSRN stations
- Estimated bottom limit of shallow layer
- Estimated bottom limit of deepest layer
- -- Topography before landfilling (1969)

Example results

2) Onoz landfill- HVSRN + boreholes

Example results

2) Onoz landfill- resource distribution model

Advantages and limitations

Seismic refraction:

- Main method to delineate bottom of waste at greater depth
- Unable to detect a low velocity layer below a higher velocity layer
 - potential difficulties for waste zonation and cover layer thickness

MASW:

 Main method to delineate bottom of waste and waste zonation for medium waste thickness (limited depth of investigation)

HVSRN:

- Efficient method to delineate bottom of waste at greater depth

Interfeg Image: Construction North-West Europe Image: Construction RAWFILL Confunded by the Walloon region

Raw materials recovered from landfills

The Interreg North-West Europe Project is coordinated by SPAQuE and unites 8 partners from 4 EU regions.

