

Re-use

Describe

Recover

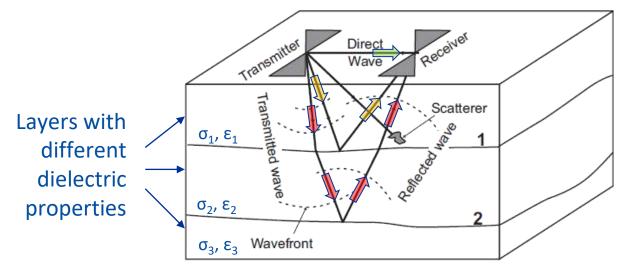
Introduction to Ground Penetrating Radar (GPR)

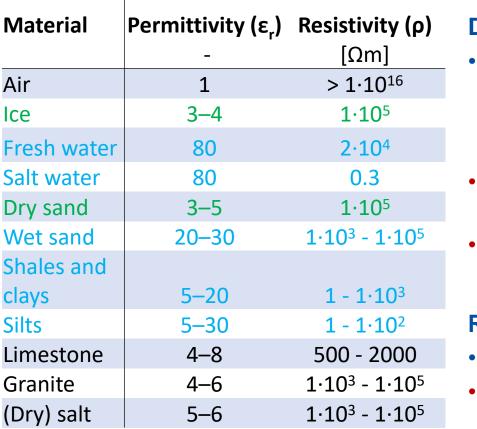
ULiege & BGS

RAWFILL

		Mapping				Profiling					
		EMI	MAG	ERT	IP	MASW	SRT	GPR	HVSRN	SP	GRA
Landfill structure	Lateral extent										
	Cover Layer thickness										
	Vertical extent										
	Utilities										
Landfill characterization	Waste zonation										
	Leachate content										
Environmental conditions	Geology										
	Groundwater table										
Staff required for survey		ţţ	Ť	ţţ	ţţ	<u>*</u> **	林大	Ť	Ť	ţţ	Ť
Required time for survey		G	Θ	CO	QQ	000	90	G	G	ĊĊ	GÐ
Required time for processing		0	Φ	CO	œ	COD	QO	œ	G	CO	CO

RAdio Detection And Ranging


- Used to determine range, angle, or velocity of objects
- Radio wave signals
- Frequencies 10 >4000 MHz thought to be too high for ground penetration → used in plane altitude measurement



- ... however, in the 1950's US Air Force pilots were crash landing on ice fields in Greenland.
- Radar altimeter reflections from the base of the ice were misread as reflections from the surface.

- Operates by transmitting pulses of EM waves of frequencies 10 MHz – 4 GHz through a transmitting antenna
- Changes in dielectric properties cause parts of the signal to be reflected back to the surface, where it is recorded and amplified by the receiving antenna
- The amount of reflected energy is dependent on the contrast in electrical properties

Dielectric permittivity

 Defines how strongly a material becomes electrically polarized under the influence of an electric field

Interreg

North-West Europe

- Determines the reflection and refraction of radiowave signals
- Impacts the velocity and then the wavelength of radiowave signals

Resistivity

- Inverse of conductivity
- Impacts the attenuation of radiowave signals

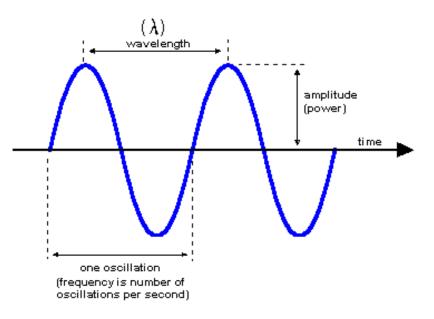
Interreg **Ground Penetrating Radar (GPR)** North-West Europe Method – basic concepts

$$\lambda = \frac{wave \ speed}{frequency} \sqrt{rel. \ permittivity}$$

Wavelength (and thus frequency) determines resolution.

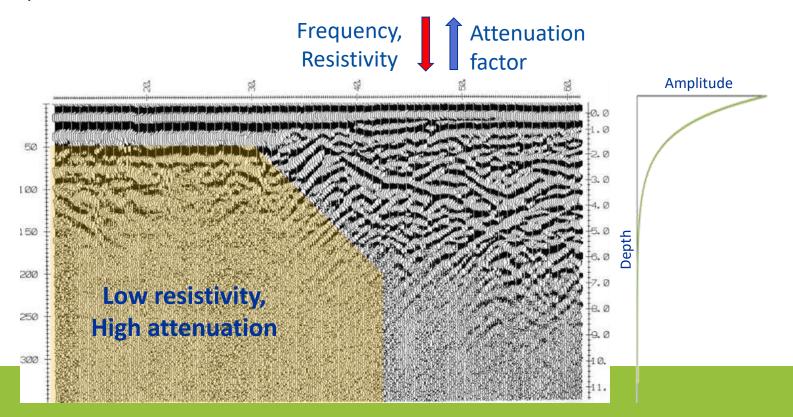
Wavelength

Resolution Frequency


Example:

EM waves travel with the speed of light in air (c = 300 000 km/s)

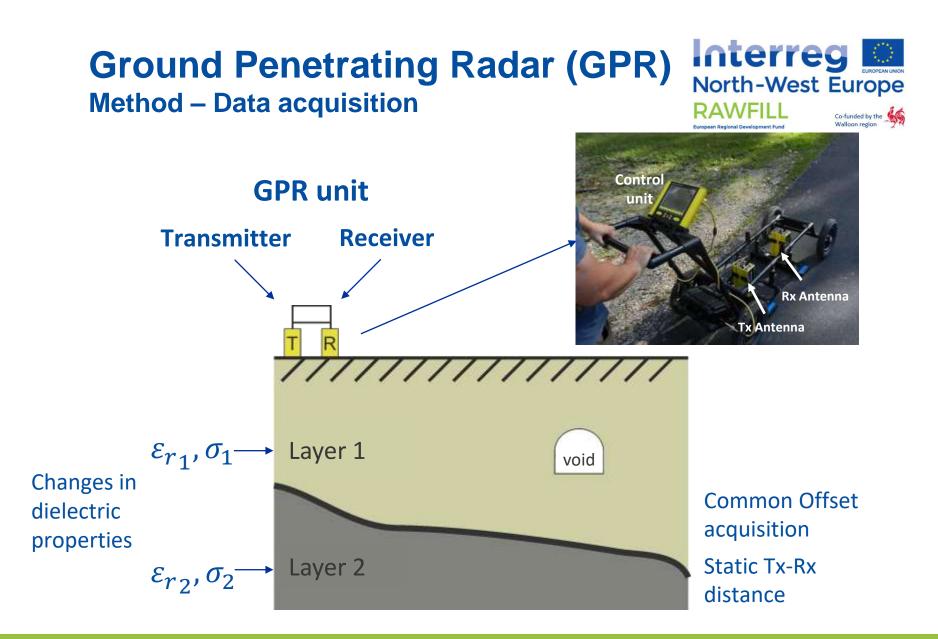
100 MHz signal:

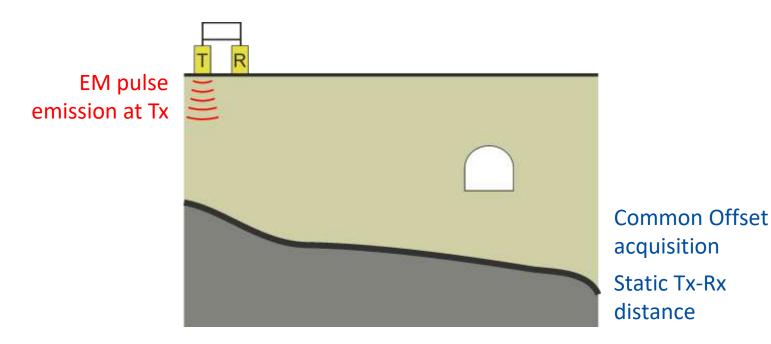

Air: 3 m Rock: 2.4 m Salt water: 0.9 m

500 MHz signal: 0.6 m Air: Rock: 0.5 m Salt water: 0.2 m

Co-funded by the

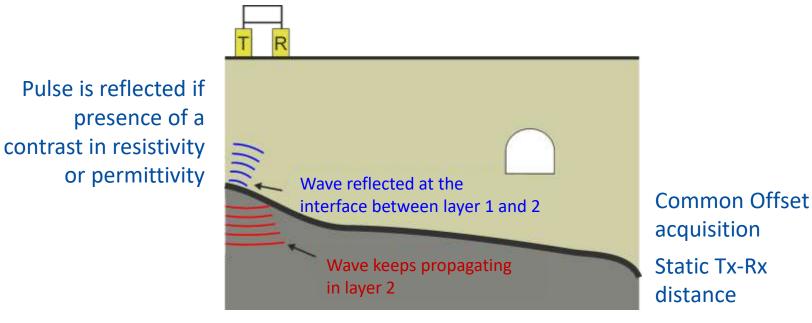
In the ground, radar waves cause currents to flow \rightarrow loss of energy = attenuation Radar signal amplitude shows an **exponential decay** with depth, which is proportional to an **attenuation constant**



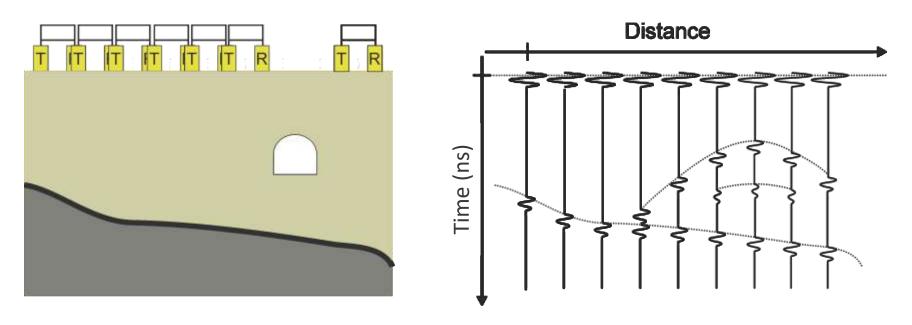

Attonuation

			Attenuation
Permittivity (ε _r)	Resistivity (ρ)	Velocity (V)	constant (α)
	[Ωm]	[m/ns]	[dB/m]
1	> 1.1016	0.3	0
3–4	1·10 ⁵	0.16	0.01
80	2·10 ⁴	0.033	0.1
80	0.3	0.01	1000
3–5	1·10 ⁵	0.15	0.01
20–30	1·10 ³ - 1·10 ⁵	0.06	0.03–0.3
5–20	1 - 1·10 ³	0.08	1–100
5–30	1 - 1·10 ²	0.07	1–100
4–8	500 - 2000	0.12	0.4–1
4–6	1·10 ³ - 1·10 ⁵	0.13	0.01-1
5–6	1·10 ³ - 1·10 ⁵	0.13	0.01-1
	1 3-4 80 80 3-5 20-30 5-20 5-30 4-8 4-6	$[\Omega m]$ $[\Omega m]$ $1 > 1 \cdot 10^{16}$ $3-4 \qquad 1 \cdot 10^{5}$ $80 \qquad 2 \cdot 10^{4}$ $80 \qquad 0.3$ $3-5 \qquad 1 \cdot 10^{5}$ $20-30 \qquad 1 \cdot 10^{3} - 1 \cdot 10^{5}$ $5-20 \qquad 1 - 1 \cdot 10^{3}$ $5-30 \qquad 1 - 1 \cdot 10^{2}$ $4-8 \qquad 500 - 2000$ $4-6 \qquad 1 \cdot 10^{3} - 1 \cdot 10^{5}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

The **smaller** the resistivity, the **higher** the attenuation, the **smaller** the return signal.

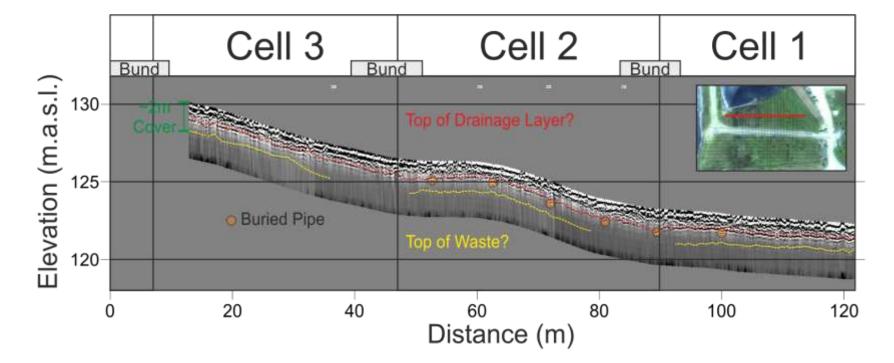


- Operates by transmitting pulses of EM waves of frequencies
 10 MHz 4 GHz through a transmitting antenna
- Waves travel through the ground and parts of the signal is **reflected** on **discontinuities** of dielectric properties (**permittivity**, **resistivity**)

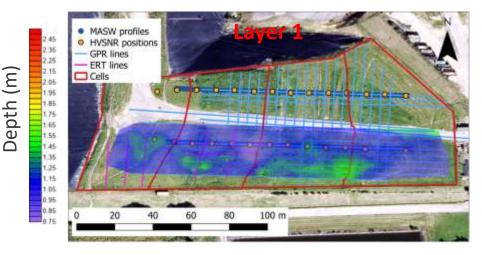


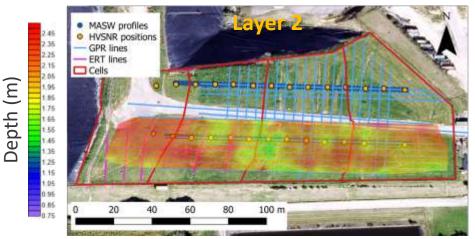
- Operates by transmitting pulses of EM waves of frequencies
 10 MHz 4 GHz through a transmitting antenna
- Waves travel through the ground and parts of the signal is **reflected** on **discontinuities** of dielectric properties (**permittivity**, **resistivity**)
- Reflected waves are recorded at the surface by the receiver antenna

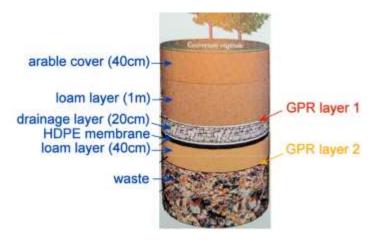
- As the antennas move, multiple traces are recorded
- These traces show peaks in amplitude coming from the reflected waves
- They typically display layers and hyperbolas


Ground Penetrating Radar (GPR) Case histories – Les Champs Jouaults

- Imaging buried pipes
- Two interfaces corresponding to:
 - Boundary between 2 type of material in the cover layer
 - The top of the waste

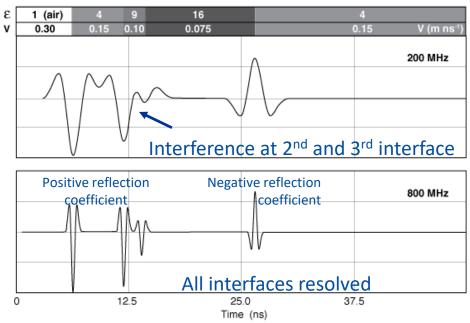

Interreg


North-West Europe

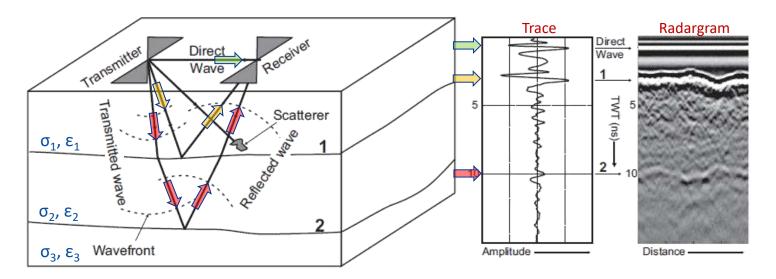


Ground Penetrating Radar (GPR) Case histories – Les Champs Jouaults

- Picking the 2 layers in data from parallel surveys (3D grid)
- Interpolation gives a map (isosurface) of the 2 interfaces retrieved from the GPR data


Ground Penetrating Radar (GPR) Method – summary

- Operates by transmitting pulses of EM waves of frequencies
 10 MHz 4 GHz through a transmitting antenna
- Waves travel through the ground and are reflected at discontinuities of dielectric properties (permittivity, resistivity)
- Reflected waves are recorded at the surface by the receiver antenna
- EM waves are attenuated in the ground; attenuation controlled by the grounds resistivity
- Resolution is a function of wavelength/frequency; the higher the frequency, the smaller features can be resolved
- But the higher the frequency, the higher the attenuation too...


Interfeg Image: Construction North-West Europe Image: Construction RAWFILL Confunded by the Walloon region

- If a GPR signals encounters a **discontinuity** in **resistivity** or **permittivity** a part of the signal will be reflected.
- The wavelength must be smaller than any given layer to resolve its thickness.
- If the layer is thinner interference occurs
- Importance of choosing the appropriate frequency for the antenna

- Depending on attenuation, reflection coefficient, interference, etc., these waves show different amplitudes, informing on different layers, or objects
- When displayed altogether, next to each other, these traces form an image called radargram

