The Interreg NWE Project Codex4SMEs:

Webinar rules

- Switch off your camera and your microphone. 1.
- 2. During the whole webinar, only the speakers will be allowed to talk.
- 3. Ask questions via the CHAT.
- If you cannot hear the speaker please inform us via CHAT. 4. Alternatively, use the dial-in number:

⊠ codex4smes@medunigraz.at

European Regional Development Fund

Interreg NWE Project Codex4SMEs Introduction

Webinar, 9th of March, 2021

Pablo Zardoya-Laguardia, PhD

Biobank Graz (Medical University)

Interreg NWE Programme

European Territorial Cooperation programme with the ambition to make the North-West Europe area a key economic player and an attractive place to work and live, with high levels of innovation, sustainability and cohesion.

Codex4SMEs Project

Codex4SMEs

= **Companion diagnostics expedited for (4) Small** and Medium Enterprises

Total budget:	3 M €
ERDF budget:	2 M €
Project period:	51 months

Objective of the project:

- Improve healthcare by enhanced adoption of \geq Personalized Medicine
- Establishing a network which supports SMEs along \geq the value chain of Companion diagnostics (Cdx) development

Associated Partner:

EATRIS European Infrastructure for Translational Medicine, NL

Medical University of Graz Biobank

Codex4SMEs project introduction

What is in for you?

Our services for your path towards the market

Codex4SMEs Project – Free Sample Access Service

to boost your research in the diagnostics' sector

- Samples for Pilot-projects (no ethics vote required)
- To test or establish a new method
- Clinical samples from a max. number of 5 patients

Samples for Research-projects (valid ethics vote mandatory)

- Sample access for research projects/biomarker research
- Clinical samples from a max. number of 20 patients
- → Open for any European SME working in the Diagnostics' sector
- → Samples are provided by the Biobank of Graz
- → Ask for sample availability at <u>codex4smes@medunigraz.at</u>
- → More Info: <u>https://www.nweurope.eu/codex4smes</u>

Biological Samples in Biobanks – Types, Quality, Management and Gains for your Business/Research

Webinar, March 9th, 2021

Pablo Zardoya-Laguardia, PhD

Biobank Graz (Medical University)

Definition

"biorepository that accepts, processes, stores and distributes biospecimens and associated data for use in research and clinical care"

Goal/Importance

Collect, store and disseminate specimens and related data

Maintenance standards in different processes: collection, processing, storage, tracking and shipment of biospecimens are key to the outcome of a multitude of studies

What type of tissue samples?

Yvonne G. De Souza and John S. Greenspan. 2013. Biobanking Past, Present and Future: Responsibilities and Benefits. AIDS. 28; 27(3): 303–312.

interrec

1. Tissue Sampling

Tissue sampling refers to various procedures to obtain body fluids or tissue (e.g. bone, muscle, etc.) for analysis.

1.1. Frozen tissue/samples

- Long term preservation
- Native state
- Stored at -20°/-80°C (equipment)
- Less common source of archived material

1.2. Formalin-Fixed Paraffin-Embedded (FFPE)

- Long term preservation
- Denatured state
- Stored at RT
- Most common source of archived material

⊠ codex4smes@medunigraz.at

Interrec

North-West Europe

1. Tissue Sampling

Comparison between the sample 2 types

Frozen Tissue	FFPE
Ultra low T° freezer required (more expensive)	Stored at RT in a cabinet (cheaper)
No dangerous handling (safer)	Formalin: volatile & toxic (riskier)
Less laborious & quicker	Laborious & time consuming
Vulnerable power/mechanical failures	Stable for decades
Structural integrity compromised	Good cell/tissue morphology
Protein native state (biochemical analysis)	Protein denatured (no biochemical analysis)
DNA/RNA well preserved (genetic analysis)	DNA/RNA damaged (limited genetic analysis)
More standardised (less interlab variability)	Less standardised (more interlab variability)
Not familiar for pathologist	Established method for diagnosis

2. Methods for analysis

Medical

2.1. Immunohistochemistry

Interreg North-West Europe 10

2. Methods for analysis

2.2. Tissue Microarrays

🖂 codex4smes@medunigraz.at

2. Methods for analysis

2.3. PAXgene

PAXgene Tissue FIX Container (50 ml) - QIAGEN Online Shop

EU GDPR Update - Please check back shortly (thomassci.com)

⊠ codex4smes@medunigraz.at

2. Methods for analysis

2.4. Laser Capture Microdissection

Chandrakant Tayade, Andrew K. Edwards, Mallikarjun Bidarimath. Laser Capture Microdissection. 2014. Academic Press. 567-575

Interreg North-West Europe ex4SMEs 13

⊠ codex4smes@medunigraz.at

3. Tissue Samples

3.1. Body Fluids

I. Blood samples

- Research (biomarkers) & diagnosis
- long-term storage: -80°C

<u>A. Whole Blood</u> \rightarrow tube + anticoagulant (EDTA, heparin or citrate) <u>B. Plasma, buffy coat and haematocrit</u> \rightarrow tube + anticoagulant + centrifugation

<u>C. Serum</u> \rightarrow tube + 10-30 min (no anticoagulant!) +

centrifugation (after clotting)

☑ codex4smes@medunigraz.at

3. Tissue Sample

3.1. Body Fluids

II. Urine

- Metabolic diseases, drug or microbiome analysis
- Short-term storage: ~4°C; long-term storage: -80°C

III. Saliva

- DNA/RNA extraction, hormone or microbiome testing
- long-term storage: -20°C

IV. Synovial fluid (SF)

- Specific diseases (arthritis)
- Samples frozen promptly (-80°C)

3. Tissue Sample

3.1. Body Fluids

V. Cerebrospinal fluid (CSF)

- Diagnosis of several neurological diseases
- long-term storage: -80°C

VI. Liquid samples – reproductive medicine

- Metabolic diseases, infertility and stem cell therapy
- Supernatant of the fertilised egg cell (\mathcal{P}), semen (\mathcal{T}), seminal plasma, follicular fluid (\mathcal{P}), cumulus cell (\mathcal{P}) and cord blood (placenta)
- long-term storage: -80 to -160°C

3. Tissue Sample

3.1. Body Fluids

VII. Haematological samples

- Blood disorders, spread infection/cancer to the bone marrow & stem cell therapy
- Bone marrow biopsy (solid) and aspiration (liquid)
- Peripheral blood smear
- long-term storage: -80°C

What are stem cells and bone marrow? - Macmillan Cancer Support

R.A. Trejo-Ayala, M. Luna-Pérez, M. Gutiérrez-Romero. Bone marrow aspiration and biopsy. Technique and considerations. 2015. 78;4; 196-201

🖂 codex4smes@medunigraz.at

Medical University of Graz Biobank

3. Tissue Sample

3.1. Body Fluids

VIII. Stool Samples

- Fecal occult blood test or microbiome analysis
- long-term storage: -80°C

IV. Hair, nail clippings and teeth

- Testing of drugs, nutrition, poisons/toxicity and stem cell therapy
- long-term storage: from RT to -80°C

3. Tissue Sample

3.1. Body Fluids

X. Non-human samples: microorganisms (bacteria/fungi)

- Research & diagnosis
- Freezing \rightarrow Bacteria + cryoprotectant + snap-frozen (from -20 to -190°C)
- Freeze-drying → freeze-dried in medium and then freeze-drying suspension (from 4 to -20°C)

XI. Post-mortem samples – autopsies

- Different reasons
- Before or during an autopsy (blood, urine, liquor, bile, gastric contents, tissues, etc.)
- Specific ethical guidelines

4. Biobank Graz – Sample Collections Overview

Healthy Control

- · Citizens of Graz · Healthy aging study
- Healthy control

Endocrinology

- Diabetes mellitus
- Morbid obesity
- Rheumatic diseases
- PCO Polycystic ovarian disease
- Osteoporosis

Dermatology

- Psoriasis
- Fibrosis of skin
- Scar conditions
- Other skin diseases

Gynecology

- Disorders of cervix uteri
- Pre-eclampsia
- Diabetes mellitus in pregnancy
- In vitro fertilization Follicular fluid
- Placenta disorders

Specific Collections & Cohorts (medunigraz.at)

Oncology and Hematology

- Head and Neck
- Mamma
- Prostate
- Colorectal
- Gynecological
- Leukemia
- Others (pancreas, esophagus,...)

Cardiology

- Ischemic heart diseases
- Hypertension
- Other heart diseases

Pulmonology

- COPD/Asthma
- Other pulmonary diseases

Orthopedics

- Osteosarcoma
- Cartilage
- Bone /Soft tissue tumors
- Other bone diseases

4. Biobank Graz – More Detailed Sample Material

Urine

Paraffin material

Paraffin block
Original paraffin section
Paraffin section
Paraffin shavings
Tissue microarray

Cryopreserved tissue

Cryo tissue	
Crvo section	

Body fluids and other samples

EDTA whole blood	Cumulus cells	Liquor
Serum	Follicular fluid	Liquor cells
Buffy coat (= EDTA buffy coat)	Fertillized egg supernatant	PAXgene® Blood RNA
Plasma: - EDTA plasma	Superpatent	Saliva
- Na citrate plasma	sopernalani	Synovial fluid
- LI-HEP plasma	Connior	Stool sample
Urine: - Spontaneous - 24-hour urine	Seminal plasma	Other:

Blood samples IVF samples

Interreg North-West Europe 21

other

⊠ codex4smes@medunigraz.at

Medical University of Graz Biobank

Preanalytical Phase

- Mostly meet Biobanks
- Anything that comes before the analysis phase
- All factors in handling that affects integrity of the samples

Analytical Phase

Postanalytical Phase

1. Preanalytical Phase

1.1. Biological/environmental Factors

2. Processes Involved in Sample Quality

Iniversity of Graz | **Biobank**

- Obtaining tissue or fluids which represents the kind and quality of the whole sample for clinical (diagnosis, treatment and recovery) and research purposes
- Biopsies, blood draws or donations, saliva, urine, needle punctures, etc. Blades, scalpels, scissors, lancet, tubes with additives, needles, plastic containers
- Forgotten, incorrect, duplicate, type and age of devices, contamination of specimen, insufficient sample volume, diluted samples, short-term storage
- Example: first blood draw order is the most representative (blood composition depends on blood draw); using a too-thin needle might produce hemolysis

Ellervik C, Vaught J. Preanalytical variables affecting the integrity of human biospecimens in biobanking. Clin Chem. 2015 Jul;61(7):914-34. doi: 10.1373/clinchem.2014.228783. Epub 2015 May 15. PMID: 25979952.

2. Processes Involved in Sample Quality

2.2. Processing

Iniversity of Graz | **Biobank**

- Process of keeping the biospecimens free from damage or decay over the time
- Automated systems (bar-code reading, decapping, fractioning, aliquoting), T°controlled centrifuges, labels (unique, adhesive, cryostable, etc.), material (tubes, swabs, etc.)
- Processing duration, aliquot volume, rough handling and pipetting, mislabelling (unlabelling), wrong ID pairing of primary and secondary tubes.
- Example: processing time reduction increases DNA yield (blood); aliquot volume help reducing freeze-thaw cycles; smooth handling avoids analytes degradation

Ellervik C, Vaught J. Preanalytical variables affecting the integrity of human biospecimens in biobanking. Clin Chem. 2015 Jul;61(7):914-34. doi: 10.1373/clinchem.2014.228783. Epub 2015 May 15. PMID: 25979952.

2. Variables Involved in Sample Quality

2.3. Transportation

Iniversity of Graz | **Biobank**

- Act, process, or activity of taking biospecimens from one place to another either by foot or in a vehicle trying to limit the degradation of the sample.
- Transportable coolers, refrigerators or freezers, special packing, dry ice
- Environmental exposures (season, distance, duration, method of transportation), receiver not on duty, wrong packing-labelling, sent to wrong laboratory
- Example: wrong packing or labelling might cause delays (sample integrity); tubes transported vertically/ smooth handling-transport (hemolysis)

Ellervik C, Vaught J. Preanalytical variables affecting the integrity of human biospecimens in biobanking. Clin Chem. 2015 Jul:61(7):914-34. doi: 10.1373/clinchem.2014.228783. Epub 2015 May 15. PMID: 25979952.

2. Variables Involved in Sample Quality

- Process of long-term preservation for bioespecimens; ideally they remain equivalent to freshly-collected specimens for the purposes of research
- Fridges, freezers, cabinets and drawers, tanks and LN2
- Time from processing to storage, storage duration, T°, and facility, environmental factors (humidity, moisture, dehydration, evaporation, etc.), no labelling/destroyed labelling, microbiological contamination, missing aliquots, freeze-thaw cycles
- Example: thaw and freezing cycles might affect stability of analytes; high humidity might lead to microbiological contamination

Ellervik C, Vaught J. Preanalytical variables affecting the integrity of human biospecimens in biobanking. Clin Chem. 2015 Jul;61(7):914-34. doi: 10.1373/clinchem.2014.228783. Epub 2015 May 15. PMID: 25979952.

Iniversity of Graz Biobank

Codex4smes@medunigraz.at

Management of Biological Samples

1. Labelling/Coding of Samples

1.1. Barcode labels/QR codes

- Method of representing data in a visual, machine-readable form
- Unique identifiers standard in sample management
- Barcode labels (1D or 2D) \rightarrow represented data by varying the widths and spacings of parallel lines or using rectangles, dots, hexagons and other geometric patterns; QR code \rightarrow especial and more secure type of 2D barcode

Management of Biological Samples

1. Labelling/Coding of Samples

1.1. Barcode labels/QR codes

Tissue pieces or fluids:

FFPE blocks or slides:

⊠ codex4smes@medunigraz.at

2. Documentation

2.1. Collection

- Sender information: hospital, institution, department, physician's name, etc.
- Patient information: name & surname, birth date, case number, PID, etc.
- Date and time: site of sample localization, tentative diagnosis, etc.

2.2. Processing/Storage

- Analog
- Digital

3. Data Management

Processes related to managing data as a valuable resource Sample storage + clinical data

3.1. IT System

- Organizational system designed to collect, process, store and distribute info
- Directly related to sample management
- Efficient IT system \rightarrow supports sample management + data management

1. Standardised quality

- Quality control/assurance procedures compliant with applicable European and International standards
- SOPs should be established and made publicly available
- ISO 9001:2015, ISO 20186:2019, CEN 16945:2016
- Sample quality is guaranteed

2. Clinical data from samples

- Access to clinical data from the patients (when possible)
- Related clinical data from the biospecimens
- Find correlation or even causality between your results and the clinical data obtained
- Reasons for outlayers or strange results, new correlations or hypothesis, etc.
- Quality & reliable results

3. Social and ethical issues

- Use of medical samples that are no longer required for your treatment. Samples can be used for current research projects or stored for future research projects.
- Every project requires a **favorable opinion** from the **ethics committee**.
- Samples & data only used for research if the donor has been fully informed and has positively signed an informed consent.
- No more or different tissue will be removed from the donor than is necessary for the diagnosis/treatment of the disease (blood up to max 20 mL).
- Due to data protection, samples/data are used in coded (pseudonymised) form.
- **Right to revoke** consent to the **sample use at any time** and without giving reasons.

- Biomarker development is a multistep and iterative process beginning with biomarker discovery in disease and non-disease samples.
- Biobanks increase the success rate of biomarker development strategies by providing high quality samples and data and thereby accelerate the availability of new therapeutics

Biobank Graz Team

⊠ codex4smes@medunigraz.at

Biological Samples in Biobanks – Types, Quality, Management and Gains for your Business/Research

Webinar, March 9th, 2021

Pablo Zardoya-Laguardia, PhD

Biobank Graz (Medical University)