

<u>BIOBASED POLYMERS</u> properties, opportunities and challenges

CurCol - Natural Colorants for Bioplastics April 20th 2021

Dr. Isabel De Schrijver, Centexbel

Polymers and plastics

A cooled plastic melt will retain the shape of a mold

Melting plastics allows for additives to be mixed in \rightarrow finetuning of properties possible

Malleable + wide range of properties = near endless applications

Bioplastics, not a new phenomenon

The first plastics were biobased

Celluloid

Cellophane

What are bioplastics?

- Bioplastics "Unregulated term"
- Collective term for very different plastics
- "Bio" can refer to renewable origin and/or biodegradable property

Why biodegradable?

- Not all plastic products have to be biodegradable, oftentimes recycling is preferred
 - e.g. PET bottles = not contaminated with lots of organic material \rightarrow recycling is the preferred option
 - Tea bags, fruit stickers, coffee filters... = food-
 - contaminated packaging → good candidate for biodegradability
- **D** Energy
- E Incineratio
- F Landfill

Bioplastics overview

	Biodegradable	Nonbiodegradable
Bio-based	CA, CAB, CAP, CN, P3HB, PHBHV, PLA, starch, chitosan	PE, PA 11, PA 12, PET, PTT, PEF
Partially bio-based	PBS, PBAT	PBT, PET, PTT, PU
Fossil fuel-based	PBS, PBSA, PBSL, PBST, PCL, PGA, PVOH	PE, PP, PS, PVC, ABS, PBT, PET, PA 6, PA 6.6, PU non-exhaustive list

Bioplastics can be biobased, biodegradable or both

 \rightarrow fossil fuel-based plastics can be biodegradable

Biobased content

Most plastics contain a polymer and multiple additives *e.g. flame retardants, colour pigments, fillers, plasticizers...*

(Biobased) additives are also important to take into account when considering biobased content

Why biobased?

Plastics are...

- o unmatched in available
 properties → fine-tuning possible
 = near endless applications
- excellent food packaging
 (barrier) materials = less food
 wasted

Plastics are...

- o usually made from petrochemicals
 - o Oil is a limited resource
 - Oil availability is dependent on geography (political)

Plastics have become an integral part of our economy/society Plastics production from oil is not sustainable

Biobased plastics production thermoplastics

Drop-ins

Drop-ins are structurally identical to their petrochemical counterparts

Drop-ins can be processed in the same way as their petrochemical counterparts

e.g. PE can be readily replaced by bio-PE in existing processes. HOWEVER, there is no guarantee that a biobased alternative is available for the specific PE grade used.

New biobased plastics

Some of the latest biobased plastics require a completely new approach to processing

New biobased plastics

Many of the more widespread biobased plastics are offered as <u>ready to use **pellets**</u>

PLA pellets

e.g. PLA, PHBV, CA, Starch (TPS)

Feeding the machinery is usually not an issue

They can be processed in a similar fashion to petrochemical plastics, but with some caveats

RATHOLE ARCHING CLINGING MATERIAL BRIDGING

Create your biobased solutions!

MATRIX

PLA Bio-PE bioPA acrylics

PROCESSING

Molding Casting Coating Extrusion injection

...

OK biobased

ADDITIVES

Filler

FR

. . .

CERTIFICATION

Biobased Biodegradable LCA

• • •

Contact details – Questions?

Isabel DE SCHRIJVER, PhD Phone +32 488 999 226 www.centexbel.be | ids@centexbel.be CENTEXBEL | Technologiepark 70 | BE 9052 ZWIJNAARDE CENTEXBEL - VKC | Etienne Sabbelaan 49 | BE-8500 KORTRIJK

