

#EUGreenWeek **2021 PARTNER EVENT**

Mark Lacroix (Pulsed Heat) and Coert Petri (Water Authority Vallei en Veluwe)

From toilet paper to.....

Valuable resources

Process schematic

Cellulose Screens/sieves

- Screens are placed after coarse screen
- Lower organic load for the WWTP
- 25 % of Ede (300.000 PE)

Ash residue

Dewatering press

Cellulose Screens and dewatering

- Hydraulic capacity: 300 m3/h per sieve
- Mesh size: 90-1000 micron (350 μ mesh used)
- Pre-coat → removal smaller particles
- Mesh cleaning (low pressured air)
- Dewatering by a press (45...50% DS)

Drying section

Pyrolysis

- Cracking of organic material at a high temperature and low oxygen content
- Temperature gradient 200-900 °C
- Flash reactor for very rapid pyrolysis
- Advantages:

Degradation toxic components and pathogens; gasses as fuel

Disadvantage:

Ash contains heavy metals
(Flash pyrolysis higher bio-oil yield)

Pyrolysis section

(4) Pyrogas co-(3) Seperation (1) Reactor (2) Burner combustor **Pellets Syngas** Volatiles Flue gas KITTER TELEVI Bio-char Pyroligneous acid Bio-oil

Pyrolysis Products

Char Used as activated carbon, For adsorption of micro-

Bio-oil Green fuel used Externally for steam generation

pollutants in effluent

Acid (pH \sim 5) Enhances denitrification and biological P-removal in WWTP

Pyrolysis gas Combusted in the installation, to supply heat for the dryers

Activated carbon

- Microstructure (500...2000 m²/gram)
- Binding particles/molecules by hydrofilic and aromatic structures
- CO₂ footprint
- Bio-coals: cocoswaste, woodchips,etc. And: CELLULOSE
- Activation: thermal, chemical or biological
- High % cellulose en hemicellulose: low yield
- High % lignine: high yield, less functional groups
- Low pyrolyse temperatuur: hydrofilic groups
- High pyrolyse temperatuur: aromatic groups

researchgate.net

Elimination of micro pollutants from effluent

Factors involving the removal of micro-polutants, using AC

Influent quality

- First flush
- Cellulose content
- Minerals
- Metals

Pyrolysis

- Feedstock quality
- Temperature
- Residence time

Activation

- Bio-char quality
- Activation route
- Residence time
- Temperature

Effluent composition

- AC quality
- Desired removal
- Polutant concentrations

Optimisation of the installation, reducing energy consumption, and increasing desired products

How circular and environmental positive is the process?

- WWTP, reducing sludge deposition, producing biochar, acid, bio-oil
- Replacing fossile activated carbon (removal pharmacueticals)
- Can the energy consumption be reduced?
- Footprint powder/granular activated carbon (PACAS)

Impact on WWTP

Start up soon!

