



### **Objectives of the NextGen solutions**

#### Positioning of demo case within the CE



- Recovery of phosphorus in sludge for reuse as P-fertilizer
- Nitrogen stripping via membrane contactor
- Production of granular activated carbon using local biomass and sludge







**WWTP**: 100,000 PE; 300,000 PE (sludge treatment)

**Lead partner:** 



Fachhochschule Nordwestschweiz

**Other partners:** 



**Relevant sectors** 







## Altenrhein – General description of the site



**WWTP**: 100,000 PE; 300,000 PE (sludge treatment)

#### **Primary treatment:**

bar screens, sand trap, primary clarifier

#### **Secondary treatment**:

nitrification, denitrification, enhanced biological phosphorus removal, secondary clarifier

#### **Micropollutants elimination:**

Ozonation, and adsorption on granular activated carbon

#### **Sludge treatment**:

anaerobic digestion & sludge drying





#### **Altenrhein**

#### **Switzerland**



### Organic micropollutants elimination



#### >80% Elimination

(average of 12 indicators substaces)



## **Goals and approch**

#### **GOALS:**

- 1. To manufacture GAC from renewables with similar performances as commercial GAC
- 2. To test renewable GACs for the elimination of organic micropollutants as tertiary treatment at pilot scale

#### **APPROACH:**

- Laboratory and pilot experiments to investigate the effect of pyrolysis and activation on GAC performances
- 2. Production of 2 two GACs from renewable resource
- 3. Operation and monitoring of 2 GAC fixed bed filters for 8-12 months



## **Production of GACs from renewables**

| Phase                       | Objectives                                                                                                                                                                                                                                                                                           |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pilot trials                | <ul> <li>To generate samples under different conditions:</li> <li>2 renewable resources (Cherry pits and Sewage sludge)</li> <li>Temperature of pyrolisis and activation (700, 800, 900°C)</li> <li>Activation gas (CO<sub>2</sub>, H<sub>2</sub>O)</li> <li>Residence time (10, 20, 30')</li> </ul> |
| Characterization of samples | To assess properties and performances:  • Yield of production and ash content  • Particle size distribution  • Density  • Hardness  • Specific surface, and porous size distribution  • Adsorption (SAC254, OMPs)                                                                                    |



#### Results: Renewable granular activated carbon (GAC)

Thermogravimetric analyis of pilot materials activated at 900°C for 10' with H<sub>2</sub>O

- Sewage sludge GAC (SS) with 10-15% «anorganic carbon» content
- Cherry pit GAC (CP) with 90% «anorganic carbon» content





#### Results: Renewable granular activated carbon

## Sewage sludge GAC with higher density than reference Cherry pit GAC with lower density than reference





# The GAC<sub>sewage sludge</sub> and GAC<sub>Cherry pits</sub>

| Sample<br>name | Cond.                  | SAK<br>adsorption<br>[%] | total area<br>[m²/g] | total porous<br>volume<br>[m³/g] | PB hardness<br>[%] | tap density<br>[kg/m <sup>3</sup> ] | Production yield [%] |
|----------------|------------------------|--------------------------|----------------------|----------------------------------|--------------------|-------------------------------------|----------------------|
| SS GAC         | CO <sub>2</sub> _800°C | 9                        | 534                  | 0.176                            | 87                 | 592                                 | 50                   |
| CP GAC         | H <sub>2</sub> O_900°C | 17                       | 678                  | 0.398                            | 63.3               | 260                                 | 13                   |
| 401V           | -                      | 23                       | 722                  | Unk.                             | >90                | 490                                 | Unk.                 |



GAC<sub>Sewage sludge</sub>



**GAC**<sub>Cherrypits</sub>



## The Ozone and GAC pilot plant



Filter 1 Chemviron 401V (401V)

Filter 2 Cherry pit GAC NextGen (CP Nextgen)

Filter 3 Sewage sludge GAC NextGen (SS Nextgen)

Sampling point





## The Ozone and GAC pilot plant

| Geometry of the filters               |       |           |  |  |  |  |
|---------------------------------------|-------|-----------|--|--|--|--|
| Diameter of the column                | m     | 0.3       |  |  |  |  |
| Height of GAK_the fixed bed contactor | m     | 1.8 – 1.5 |  |  |  |  |
| Volume of the fixed bed contactor     | $m^3$ | 0.127     |  |  |  |  |
| mass of GAC <sub>Sewage sludge</sub>  | kg    | 67        |  |  |  |  |
| mass of GAC <sub>Cherry pits</sub>    | kg    | 33        |  |  |  |  |
| mass of 401V                          | kg    | 62        |  |  |  |  |

#### **Analytics**

SPE - LC MS for organic micropollutants OMP elimination Sak254 and DOC as proxy for OMPs



- Automated backwashing system
- Automated sampling at the outlet



## Organic micropollutants elimination

#### **GAC**<sub>commercial</sub> - Chemviron 401V





## Organic micropollutants elimination

## **GAC**Sewage sludge





## Organic micropollutants elimination

## GAC<sub>Cherry pits</sub>





# Overall elimination of organic micropollutants







# Overall elimination of organic micropollutants and worst case





## **SAC254** and **DOC** elimination



SAC254 and DOC elimination are not accurate proxies for monitoring of micropollutants elimination in wastewater



#### **Conclusions**

- We identified and manufacture two GACs from renewables sources to be tested at pilot scale
- After 6 months of operation, the first results indicate elimination of some
   OMPs via GAC filter when use in combination with ozone
- Standard operating conditions do not ensure sufficient elimination as demanded in Swiss ordinance (i.e. 80% elimination). Operating conditions of the filters should require further optimization (i.e. EBCT and O<sub>3</sub> dosage)
- Sak254 and DOC are useful but not accurate proxy for OMP elimination.
   Direct measurements of OMP is always preferable.



## Thank you for your attention!



Fachhochschule Nordwestschweiz



M. Thomann

A. Nättorp







D. Gysin

T. Bisang

M. Huspeka



ABWASSERVERBAND ALTENRHEIN







C. Egli

R. Peng

H. Graf





W. Goldinger



## **Contact details**



Luca Loreggian

+41 61 228 55 68
luca.loreggian@fhnw.ch

Fachhochschule Nordwestschweiz FHNW Hochschule für Life Sciences Institut für Ecopreneurship

Hofackerstrasse 30

CH - 4132 Muttenz

NextGen - WP1





# Renewable granular activated carbon (GAC) Pictures and operational procedure

## All methods have been tested with two renewable materials (FHNW):

- Pyrolysis
- Activation
- Performance
- Physical and chemical characterization

#### 1<sup>st</sup> phase - Parameter screening

- DSC/TGA plus adsorption (UV 254)
- Upscaling to pilot (1 kg/h) to verify surface area, porosity, hardness, density

#### 2<sup>nd</sup> phase - Production of optimised GAC

- 2x 150 L
- Sewage sludge, CO<sub>2</sub>, 800°C
- Cherry pits, H<sub>2</sub>O, 1000°C
- Reference Chemviron Cyclecarb







## Renewable granular activated carbon (GAC) Flow scheme of the pyrolysis





## Multiple production parameters are considered:

- 1. Feedstock material (dried sewage sludge and cherry pits)
- 2. Conditions of pyrolisis and activation (temperature, residence time, activating gas)

#### Quality of GAC is assessed based on:

- 1. Adsorption capacity
- 2. Physical properties (hardness, surface, porosity, density)



# 6. Renewable granular activated carbon (GAC) Pilot experiments operational procedure





The OMPs elimation of the GAC filters is monitored over time at different operating modes (i.e. EBCT, and  $O_3$  dosage)





#### **Monitoring of the pilots**

- Performance of the O<sub>3</sub>+GAC system (i.e. Organic micropollutant (OMPs) elimination by LC MS, and UV adsorption)
- Operating period of renewable GAC (i.e. carbon loss in the effluent)
- Biofilm formation (5-7 samples/yr) (TGA, flow cytometry, SEM, NGS)