

INTERREG 2 SEAS NEREUS PROJECT

1st of June 2021 Veerle Depuydt

New Energy and REsources from Urban Sanitation

Programme priority: 4. Resource efficient economy

Programme priority specific objective: Increase the adoption of new circular economy solutions in the 2Seas area

PROJECT DURATION: 1/10/2017 – 31/12/20201

TOTAL PROJECT BUDGET: +/- 6.9 million €(48,10% ERDF cofinancing)

OVERALL OBJECTIVE

Is to increase the reuse of resources, water and energy from waste water by boosting the adoption of technologies that recover resources, water and energy from wastewater in urban areas

> Demonstration framework and institutional framework

Water reuse

Nutrient recovery

Energy recovery

Decision Support Tool

Community Acceptance

Strategies & Business Models

Demonstrations

Antwerpen Nieuw-Zuid, BE water-link

Nieuwe Dokken Gent, BE Ducoop

Saint-Omer WWTP, FR CAPSO

Rotterdam/Delft, NL Evides

Peel Common WWTP, UK Southern Water

www.NEREUS-project.eu

European Regional Development Fund

"This project has received funding from the Interreg 2 Seas programme 2014-2020 co-funded by the European Regional Development Fund under subsidy contract No 2S03-011

Democase Den Hoorn

Results on Resource recovery from municipal wastewater

T.Steenbakker

Democase Den Hoorn

- Contents
 - NEREUS democase Den Hoorn; The process
 - General
 - Resource recovery

NEREUS democase Den Hoorn

General

- Focus on resource recovery.
- Gained operational experience.
- Fe-Elektrocoagulation:
 - Switch to Fe-coagulation;
 - Requirements nanofiltration.
- Nanofiltration:
 - Operational challanges;
 - Biological active water.
- Reverse osmosis:
 - No challanges.

Team NEREUS

- David Moed
- Paula van den Brink
- Han van de Griek
- Tessa Steenbakker
- Salah Alzuhairy
- Vincent Eckhardt
- Ruben Kok
- Siem Eerden

Teamleider R&D

Projectleider/procestechnoloog

Procestechnoloog

Procestechnoloog

Procestechnoloog

Procestechnicus

Stagiair TU Delft

Interreg 🛄

- Cellulose from toilet paper.
- C source is needed for denitrification.
- In the event of a lack of influent > purchase methanol or glycerin.
- Great impact on CO² footprint.
- Possible to enzymatically convert fine sieves into C-source?

- Enzyme performs best in acidic environment
- Several experiments on lab- and pilot scale:
 - Optimise conversion;
 - Use of the product;
 - Use of the 'leftovers / waste' of the conversion.

EXP: Denitrification test of glycerin and C-source produced from screenings of wwtp. HNP and Schiphol

2 Seas Mers Zeeën NEREUS

- Bio-Methane potential test (BMP) of the leftovers after the cellulose hydrolysis
- Methane productivity per gram of organic material:
 - Filtered leftovers: 384.4 ml/g o.m.
 - Primary sludge from Harnaschpolder wastewater treatment plant: 360 ml/g o.m.
- This means that the leftovers can be anaerobically converted to methane.

Fe-coagulation

Removal of:

- Suspended solids; 90%
- Chemical oxygen demand; 71%
- Total fosfor; > 77%
- Orthophosphate; > 69%
- Total nitrogen; 29%
- Total iron; 92%

Fe-coagulation; Biogas production

- Experiments on anaerobic digestion to produce biogas:
 - Compare FC-sludge to primary sludge of HNP.

Sample	Methane productivity (mL/g o.m.)
Fe-coagulation-sludge	362
HNP primary sludge	329

Fe-coagulation; Biogas production

- Experiment to optimise biogas production:
 - Related to pH (pre-treatment increase pH).

Sample	Methane productivity (mL/g o.m.)
FC-slib, pH 7	362
FC-slib, pH 8	479
FC-slib, pH 9	586
FC-slib, pH 10	0

Fe-coagulation; biogas production

- Digestor design:
 - Residence time 15 days
 - 17,1 kg TSS/day
 - > 8.9 m³ reactor volume
- With pH 9-yield: 5.8 m³/day
- 0.65 m³ gas/m³ reactor/day
- Compared to HNP digestor: 0.54 m³ gas/m³ reactor/day

Fe-coagulation; P-recovery

- From digestate anaerobic digestion.
- Daily 403,2g P in sludge.
- Struvite production could be 3,2 kg per day.
- Heavy metals in sludge!

	Measured value	Allowed
	mg/kg DS	mg/kg DS
Copper	547,2	75
Lead	2036,3	100
Zinc	1606,4	300

- Tubulaire photobioreactor (PBR)
 - Continuous culture
 - Autotrophic growth
- N-removal: ends up in algae biomass:
 - Valuable pigment: Phycocyanin

Galdieria sulphuraria

pH 1 - 6Produces C-Phycocyanin
(pigment) ~80€/mg

- PBR, continue, autotrophic, synthethic medium
- Limited by N-NH₄
- Light intensity of 80 μmol photons m⁻² s⁻¹

- Needed reactor volume for removal of 5 g NH₄-N/uur (50 L/uur RO concentrate).
- Adding CO₂ essential.
- 16 m³ reactor needed to remove N.
- Growth rate not high enough: add C-source?
 - 600L reactor volume limited on growth rate.
 - Enhance pigment production.

2 Seas Mers Zeeën NEREUS

- Experiments with pigment extraction from algae:
 - Beadmill, drying & freezing, pre-treatments, disruption techniques etc...
 - Pigment extraction is hard to acomplish (very strong algae).
- Enhance pigment production with mixotrophic culture.
 - Tests with different C-sources: glucose proved best.
- BMP tests on algae biomass succesfull (biogas production).

NEREUS democase Den Hoorn

