Biodiesel from wastewater?

The pilot set-up, first results and next steps

Zuzana Dedova PhD
University of Luxembourg &
Arsou Arimi PhD

Remondis Aqua Industrie GmbH & Co. KG

#EUGreenWeek 2021 PARTNER EVENT

Lipid pilot

FACULTY OF SCIENCE, TECHN

water (after screen)

4 m³ Mixing tank (homogenization)

4 m³ Reactor 1 (anoxic, lipid accumulation)

3.7 m³ Separation unit

biomass)

Storage tank (effluent)

Sludge recirculation

Lipid-pilot sampling design

FACULTY OF SCIENCE, TECHNOLOGY AND MEDICINE

SIVOM inlet water: composition of lipids

- Lipid content in sewage inlet:
 - Reported ranges between 19-539 mg/L (98-131 mg/l medium range)
- Most common lipids C16 (palmitic), C18:1 (oleic) and C18 (stearic) and C18:2 (linoleic acid)

- Lipid content in SIVOM inlet: 32.5-37.5 mg/L
 - Lipid content in lipid-pilot outlet: 20-37.5 mg/L
- Most common lipids C16 (palmitic) and C18 (stearic acid)

Lipid pilot – first results

FACULTY OF SCIENCE, TECHNOLOGY AND MEDICINE

- Optimum conditions for *Microthrix* growth and lipid accumulation are maintained (FI 2.5-4)
- Biodiesel yield 4-5.3% with ~84% transesterification efficiency
- Challenges of the technology
 - Inlet sewage water poor in LCFAs (32-35 mg/l) specific challenge at WWTP SIVOM (average BOD 93.5 mg/l)
 - Separation of sludge
 - Influence of all parameters in separate tanks
 - Slow growing bacterium
 - Not to carry Microthrix parvicella in the following treatment steps

FAMEs composition and yield in different reactors

FACULTY OF SCIENCE, TECHNOLOGY AND MEDICINE

- Lipid content does not differ much in between the reactors: 48-72 mg/g dry weight
- Biodiesel yield within the first three months up to 5.3% (in average 4.5%)
- Transesterification efficiency ~80%
- Most common lipids C16 (palmitic) and C18:1 (oleic acid)

Biodiesel production – general info

☐ FACULTY OF SCIENCE, TECHNOLOGY AND MEDICINE

- Industrially today, biodiesel (FAMEs) is produced by processing vegetable oil and animal fat.
- Solvent extraction of the lipids followed by transesterification are the preferred approaches to produce biodiesel.

Our Original Plan:

- Hydrothermal lipid extraction experiments with the Lipid-rich sludge sample (Remondis + Animox):
 - Requirements: Intermediate sludge samples to perform the optimization experiments to figure out the optimum parameter set; required dry solid content: 20 %
- Transformation into Biodiesel (Remondis + BDI): High-FFA-esterification and transesterification experiments and analysis of the produced biodiesel
 - Requirements: at least 4 Liters of extracted Lipid/Oil sample

Challenges:

- Delays and lack of time to perform enough optimization experiments
- Dewatering of the sludge sample (low dry solid content of ca. 0.5%)
- High quantity of the required sample (more than the pilot capacity)

Short summary and next steps

FACULTY OF SCIENCE, TECHNOLOGY AND MEDICINE

Current status:

 Dewatering experiments: trying several methods including filtration, centrifugation and vacuum evaporation to gain basic concentrated samples ready for qualitative analysis for further planning; eventually combining these methods to reduce the required amount of the sample.

Change of plans the next steps:

- Lipid Extraction optimizing experiments (Remondis + Animox):
 - Batch hydrothermal treatment (2 Liter Autoclaves) with the dewatered samples to evaluate the optimum conditions (If required followed by solvent extraction)
- Up-scaled extraction (20 Liter Autoclaves) and recovery of lipids from the lipid-rich sludge
- Production of the demo-biodiesel and assessment of its quality in lab-scale (Remondis + IRSA-CNR):
 - Conversion of the lipids into biodiesel under acidic conditions and purification through distillation; including optimization studies of the reactive conditions and final characterisation of the demo-biodiesel product
- Quality check with standard biodiesel (Remondis + BDI): Analysis of some selected parameters to make a statement about suitability to produce standard biodiesel.

Timeline

- The pilot run is estimated to 8 months (January-August 2021)
- Collection and transportation of sludge to Remondis (from June/July for the method development and then in August 2021)

