

How does it work?

Endogeneous sludge bacteria are doing the iob

Interreg 🛄

Bio-acidification

Reactant = sugar rich waste or by-product

→ Lactic acid bacteria growth

Up to 75% of P dissolved in previous experiments(>> chemical pH1)

3 mechanisms expected

- P release by PAO thanks to fatty acids
- P salts (Fe or Ca) dissolution by pH decrease thanks to lactic acid production
- ➤ Reduction of Fe(III) to Fe(II) more soluble → FeP dissolution

>90% of P in sludge-Struvite clogging in pipes and equipments

Demonstrator implementation: Where? Sampling for Labtest

Demonstrator implementation: where?

Percentage of the dissolved P by bioacidification

or non digested sludge
BUT

	Sugar		HCl 37 %	
	g / kg	рН	g _{HCI} /Kg	рН
	sludge	min	sludge	min
MS1	11,6	4,1	2,0	4,1
DS1	17,7	4,6	4,4	4,1
		-		

Much more reactant for acidification (bio or chemical)

The pilot will be upstream/ the digester

^{*} Total P in the Liq= [Dissolved P] I_{iq} * M_{liq} + [Dissolved P] $_{solid}$ * M_{solid} /[total P]*(M_{liq} + M_{solid}), While: M_{liq} is Mass of the liquide phase and M_{solid} is the Mass of the solide phase

Demonstrator implementation: How long?

Demonstrator implementation: Which co-substrate?

A food industry co-product can be used as a co-substrate

Demonstrator implementation: Impact on sludge valorization?

	Limiting factor	M³/ha
Without P recovery	Р	50
With P recovery	N	80

The biomethanogenic potential is increased (X2) due to the co-substrate and of the hydrolysis of the sludge

The spreading area is reduced (-40%)

Much more work about iron recovery, continuous/semi continuous process, dark fermentation for P recovery combined with H2 or specific molecules production, modeling... See the technical report

Now Demonstrator ready to go!

WWTP Schematic

o Sludges' sample have been collected on Lille Marquette plant, at different treatment stages :

In Marquette-lez-Lille

PHYSICO-CHEMICAL P WWTP: TERGNIER 400 Concentration in mg/l 350 300 250 4 표 200 150 100 50 2 5 6 7 10 11 12 13 ■ TP in SP1 Sludge (from DS) ■P-PO4 (s) in Centrate SP3 **≜**pH

HRT= 20 to 60 hrs

Co-Substrate dosing rate= 1 to 1.3 gCOD/gVS (active material)

pH = 3.5 to 4 for optimum P release

BioAcidification efficiency: up to 75% P release Overall P recovery (Bio-Sep-Cristal.): est. 54%

BioAcidification efficiency: 48 to 54% P release on chem sludge Overall P recovery (Bio-Sep-Cristal.): est. 40%

Te	ergnier (60KPE)	Struvite	HAP (14% P2O5)
Che	<u>emical</u>		
0	Lime	0	640 kg/d @ 92%
0	MgCl2	1100 kg/d @ 32%	0
0	NaOH	380 kg/d @ 30%	0
0	Polymer	47 to 63 kg/d pure	47 to 63 kg/d pure
Slu	<u>dge</u>		
0	Kg DS/DS produites	608 kg/d as struvite	1700 kg DS/j
0	Dryness	85%	40%
Chemical & Energy cost			
0	OPEX out of poly	279 EUR/d (150*1.1+0.38*300) Not considering NH4 addings	76.8 EUR/d (0.64*120)
<u>Sel</u>	ling Cost		
0	Revenue	79 EUR/d @ 130 eur/t (20 eur transport)	5 EUR/d @ 130 eur/t (20 eur transport)

Figure 3.3.14: P-product crystals after washing.

- o Most « valuable and economical » product is HAP in this configuration
- o Energy and fossil fuel recovered through Biogas extra production (90% recovery of co-substrate)
- o Production of HAP reusable as a filler for blending industry or as raw material for chem P production

Economical balance: summary

o Calculation based on a 100 KPE Bio P WWTP

BioAcido Balance	Unit	Waste
Digestor CAPEX savings	[EUR]	0
Reduced ferric chloride consumption	[EUR/d]	95
Co-subtract consumption	[EUR/d]	-210
Lime consumption	[EUR/d]	-77
PAM consumption	[EUR/d]	-117
HAP-struvite sales income	[EUR/d]	9
BioAcido electricity costs	[EUR/d]	
Savings on Fe solution recycled	[EUR/d]	
Extra biogas sales income	[EUR/d]	318
Potential Fe recycled to process	[EUR/d]	5
Operational savings	[EUR/d]	23
Operational savings	[EUR/y]	7,702

- o Co-substrate and polymer costs are balanced through biogas production and revenues (reuse of waste food product)
- No « by product » nor « difficult-to-sell » products
- Low grade product indeed, but fully reusable with no fossil fuel nor chemical extensive process

Conclusion

- HIGH REPLICABILITY AND ACCURACY BETWEEN LAB TEST AND ON-SITE TRIAL'S RESULTS
- EASY MODELLISATION AND SCALE-UP
- LOW CAPEX SYSTEM FOR MEDIUM SIZED WWTP NOT HAVING MONO-INCINERATION SYSTEM
- NO EXTRA WASTES GENERATED (NO « WET ASHES » NOR « BY-PRODUCTS » TO HANDLE)
- o LOW ENERGY CONSUMPTION (REUSE OF WASTE PRODUCT FOR BIOGAS RECOVERY USE AND SELL)
- O LIMITED IMPACT ON WWTP SCHEME, NO ADDED BURDEN TO CURRENT OPERATION AND NO CRITICITY IF UNAVAILABLE

