

Outline

- 1. Swiss context
- 2. How were the scenarios developed?
- 3. Pros and cons of the scenarios
- 4. Conclusion

Phosphorus in Switzerland

Swiss context

Legislation

VVEA- recovery from sludge and meat and bone meal

Chart n° 4

- Implementation aid 50% recovery until 2026
- (validated) Vision SwissPhospor 75% until 2036
- Minrec- fertilizer limits, stricter than EU/DE

Infrastructure

- 180'000 t sludge DM (municipal and industrial)
- Sludge incinerated, 63% in SIP
- Hardly any fertilizer production

Northwestern Switzerland

North-West Europe
Phos4You

- Northwestern Switzerland
 - 7% of Swiss area
 - 17% of Swiss population
 - 24% of Swiss sludge production
 - 38% of Swiss sludge disposal

Legislation and infrastructure similar Scenarios applicable to Switzerland

Scenario development

- Collect base data
 - Inventory of SIP of Switzerland
 - Inventory of sludge drying and cement works of Switzerland
 - Sludge balance NWCH
 - Suitable technologies
- Develop scenarios
 - Draft scenarios and target criteria with stakeholders
 - Validation workshop
 - Evaluation
 - Validation workshop for finished scenarios

Reports, News, Projects, Events @ www.pxch.ch

Sludge balance

- 180% capacity
- Replacement SIP next ~15y
- → Flexibility recovery: technology & site

Technologies

- Technology selected and described for ministry of Northrhine- Westfalia MUNLV
 - TRI
 - Technology provider
 - European experience
 - → publication pending
- Swiss context
 - Swiss target criteria
 - Cost updated
 - Bigmac-Index
 - Swiss disposal
 - Technologies
 - Less because of contaminants limits and yield requirement
 - New Swiss experiences

- 1 EcoPhos®
- 2 EuPhoRe®
- 3 PARFORCE
- 4 Phos4Life
- 5 PhosForce
- 6 Pyrophos
- 7 REALphos
- 8 Stuttgarter
- 9 ZAB/PHOS4green

Scenarios for recovery and disposal

Process step 2

Scenario Evalutionhigh influence of technology choice

		Mineralization in SIP and extraction of P from the ash				plant availability (3a, 3b)			mineralization (4)	
		T1	T2	Т3	T4	T5	Т6	T7	Т8	Т9
Economic	Investment costs	•••	•••	•00	••0	•••		•00	•••	••0
	Operating costs		••0	•00	••0	•••	•00			•00
	Revenue process output		••0	•••	•00	•00	•••		•00	•00
Environmental impact	Carbon footprint of phosphorus recovery process	•••	•00	••0	•••	•••	•••	••0	•••	•00
	Removal of pollutants (heavy metals)		•••	•••	••0	••0	•00	••0	•••	•••
	Waste quantity: landfill category B	••0	••0	•00	•00	•••	•••	•••	•••	•••
	heavy metal concentrate	••0	•••	••0	•••	•00		•00		•••
Sustainability	Recovery rate	•••		•••		•••	•	•••	•00	•00
	Contribution to closing the P cycle in Switzerland and in agriculture	•••	•••	•••	•••	•00	••0	•00	••0	••0
	Phosphate solubility in neutral ammonium citrate (NAC)	•••	No fertilizer	No fertilizer	•••	•00	•••	••0	•••	•••
Disposal	Technology Readiness Level (TRL)	•00	•00	••0	•00	•••	•••	•00	••0	••0
	Experience in Swiss <u>project</u>	•00	•00	••0	••0	•••			•00	•00

Red-<u>Ox.</u>-mineralization or acidification to increase

Extraction before

Mineralization status quo and recovery open until 2026

- Less cost with later implementation
- More technology experience on market
- Combine with disposal renewal
- Less partners for cooperation

Mineralization in SIP Extraction of P from the ash

Process step 1

Mineralization Status Quo

Mineralization SIP

Extraction

Extraction

Torth-West Europe

North-West Europe

Red.-Oxidizing-Mineralization

Reducing-Oxidazing Mineralization

Mineralization SIP

Acidification

Extraction

Acidification

Extraction

Phos4You

European Regional Development Fund

- High removal of pollutants
- High recovery rate and plant availability
- Closure of P cycle in Switzerland and in agriculture
- Complex processes with likely difficulties for first movers
- Limited Swiss experience

Mineralization in SIP extraction of P from the ash

...extraction abroad

- Requires stable cooperation partners
- Comparable cost
- German market w. additional potentially better options in SIP in Red.-Oxidizing mineralization
- Today less experience and thus more risk than with SPI.
- No known advantages in cost or environmental impact.

Reducing-oxidizing mineralization or acidification to increase of plant availability

- Process step 1
 Process step 2

 Mineralization Status Quo

 Extraktion
 Extraktion Ausland
 Extraktion Ausland
 Extraktion Feature Fund

 Reducing-Oxidazing Mineralization
 Mineralization SIP
 Acidification

 Extraktion
 Extraktion
 Extraktion
 Extraktion
 Extraktion
 Extraktion
 Extraktion
 Extraktion
 Extraction
 Extraction from sludge
 Extraction from sludge
- Relatively simple processes
- Rather positive warming potential
- Little landfilling
- High recovery rate
- Closing of P cycle difficult in Switzerland because of diluted fertilizer product
- Challenge: low contaminant input mix (e.g. MBM) to fulfill Swiss contaminant limits.

Extraction from sludge Mineralization in cement plant or MSWI (or SIP)

Process step 1
Process step 2

Mineralization Status Quo

Extraktion
Extraktion
Extraktion Ausland
Extraktion
Extraction
Extraction From sludge

Extraction from sludge

Cement works/MSWI

- High removal of pollutants
- No landfill needed if combined with cement works
- Low recovery rate
- Low output revenue
- No (positive) Swiss experience

Conclusion

- Recent, reliable data with all relevant process types
- NWCH disposal renewal gives large flexibility for disposal- recovery combinations
- No obvious best choice, stakeholder weighting of criteria decisive
- Scenario choice has considerable impact, e.g. 22 MEUR OPEX/a, 700 t P/a

The circular phosphorus future is wide open, stakeholder initiative is key

University of Applied Sciences and Arts Northwestern Switzerland

