

What is Life Cycle Assesment (LCA)?

- Standardization: ISO 14040 and 14044 (2006)
- « LCA addresses environmental aspects and potential environmental impacts (e.g. use
 of ressources an the environmental consequences of releases) throughout a product's
 life cycle from raw material acquisition through production, use, end-of life treatment,
 recycle and final disposal (i.e. cradle-to-grave) ».

Introduction to LCA methodology

Goal & Scope

Primary data ← Partners
Generic data ← Ecoinvent 3.7 (CH)

Inventory			
Flows		Quantities	
Inputs	Water	m³	
	Fuel	kg	
	Electricity	kg	
	etc		
Outputs	CO ₂ (air)	kg	
	Hydrocarbons (air)	kg	
	Waste water (water)	kg	
	HCl (water)	kg	
	Cadmium (soil)	kg	
	etc		

Impacts assesment

Potential environmental impacts

- Climate change
- Eutrophication
- Fossil ressources scarcity
- Mineral ressources scarcity
- •••

ReCiPe 2016

LCA applied to phosphorus recovery technologies

- Issue: Inclusion of the wastewater treatment plant as a sludge producer in the LCA
- Two methodological approaches:
 - System expansion
 - Avoided burden

System expansion and avoided burden

	System expansion	Avoided burden
Reference scenario	Wastewater Mineral P production	Wastewater treatment
	Treatment of 100 m³ containing 0.8 kg P ₂ O ₅ Production of 0.8 kg P ₂ O ₅ as TSP	Treatment of 100 m ³
Phosphorus recovery scenarios	Wastewater treatment + P-recovery Mineral P production	Wastewater treatment + P-recovery Avoided mineral P production
	Treatment of 100 m 3 + recovery of X kg P_2O_5 as TSP	Treatment of $100 \text{ m}^3 + \text{recovery of X kg}$ P_2O_5 Avoided production of X kg P_2O_5 as TSP

With X < 0.80 kg and depending on the recovery process

System expansion

- Multifunctional: Wastewater treatment and P-fertilizer production
- Functional unit: Treatment of 100 m³ of wastewater and the production of 0.8 kg of P₂O₅

P₂O₅: from mineral production in the reference scenario and from phosphorus recovery technologies from sludge in others

Avoided burden

- Monofunctional: Wastewater treatment
- Functional unit: Treatment of 100 m³ of wastewater

Environmental impacts of water treatment minus impacts of avoided P₂O₅ mineral production

Main assumptions

- Sludge used by the demonstrators:
 - Same sludge for all (no "local" specificity*)
 - P content = average German digested sludge (6.5 to 7 % of P_2O_5 in dry matter)
- Inventory data:
 - Sludge production (from the water treated in the WWTP) (common data*)
 - Yield of the demonstrator :
 - Mass sludge in (the demonstrator)
 - Mass P₂O₅ out
 - \rightarrow kg P₂O₅ recovered (OUT)/kg sludge (IN)
 - → Example for EuPhoRe process:
 - 100 m 3 of wastewater treated \rightarrow 60.5 kg digested sludge (DM 20%)
 - 76.65 kg sludge DM20% treated for 1 kg P₂O₅ recovered
 - \rightarrow 100 m³ of water in the WWTP = 0.79 kg P₂O₅ recovered

Main assumptions

- Bio-availability of phosphorus in P-material: Considered equivalent to the bioavailability of TSP for all processes
- Legal aspects: Important but not taken into account
- Other potential nutrients in the P-materials: Not taken into account

Reference system: boundaries

Functional unit:
 100 m³ of
 wastewater treated

Reference system: main results

- Significant deleterious impact of the wastewater treatment plant (WWTP):
 - Direct emissions (to air biological treatment)
 - Chemicals
- GWP: 47,08 kg CO₂ eq / 100 m³
- Detrimental impacts of the dewatering phase: Electricity
- Beneficial effect of cogeneration and incineration: Energy production

PULSE system: boundaries

- PULSE: Chemicalextraction process from sludge
- Functional unit:

 100 m³ of
 wastewater treated –
 avoided mineral
 production of TSP
 (1.56 kg)

PULSE system: main results

- Environmental benefit on the category of mineral resource depletion: Avoided TSP production
- Impacting process steps: Drying, organic solvent regeneration (base consumption) and process waste treatment
- Eco-design advices: Solar dryer, optimization of solvent regeneration

Struvia[™] system: boundaries

- StruviaTM: Combination of bio-acidification and precipitation of hydroxyapatite
- Functional unit: 100 m³ of wastewater treated – avoided mineral production of TSP (0.54 kg)

StruviaTM system: main results

- Environmental benefit on categories of mineral and fossil resource depletion
- Low impact of the Struvia[™] process + increased benefit from cogeneration
- Impacting process steps: Electricity and polymers use
- Eco-design advices: Optimization of the solid/liquid separation

EuPhoRe® system: boundaries

- EuPhoRe®: Thermochemical process
- Functional unit:

 100 m³ of
 wastewater treated –
 avoided mineral
 production of TSP
 (1.64 kg)

EuPhoRe® system: main results

- Potential environmental benefit for the categories of climate change, fossil and mineral resources scarcity → Favorable impact of the EuPhoRe® process
- Beneficial impacts of EuPhoRe® process: Recovered heat + significant avoided TSP production
- Impacting points of the EuPhoRe® process: Electricity and additives

EuPhoRe® process: cost analysis

-150% -200% ■ CO2 Certificates
■ Thermal energy

- EuPhoRe® P-material selling price: 0.05 € / kg P₂O₅
- TSP price (03.2021): 0.87 €/ kg P₂O₅
- Treatment cost of 1 ton of sludge by EuPhoRe® system:
 135 145 €/t DM
- Average incineration cost: 200 400 €/t DM

Economic interest of the process for sludge valorization

Conclusions

- Advantage on mineral resource scarcity category for all recovery technologies: Phosphorus recovery
- Potential environmental advantage for EuPhoRe® and StruviaTM processes
- Identification of impactful steps for each process
 - → Eco-design advices
- Two methodological approaches in LCA: Same conclusion

Take home message...

Local production of phosphorus: feasible!

- → Saving world's phosphorus mineral resources
- → Reduction of European dependence on phosphorus importing countries

Thank you for your attention

University of Applied Sciences and Arts Northwestern Switzerland

