

We deliver Phosphorus made in Europe

North-West Europe

interre

1054Vol

Recommendations towards EU standards to assess quality of recovered P materials based on Phos4You works

Phos4you final conference - 21-22.09.2021, Essen and on-line

Fertilizer Regulation in EU

REGULATION 2019/1009

 "...EU fertilising products should be placed on the market only if they are sufficiently effective and do not present a risk to human, animal or plant health, to safety or to the environment when properly stored and used for their intended purpose, or under conditions of use which can be reasonably foreseen, that is when such use could result from lawful and readily predictable human behavior..."

2

Phos4You WPT2 Quality assessment group

- Phos4You has recognized the standardization challenge and created QA to:
 - Increase understanding of fertilizing P materials quality and behavior,
 - Compare the different classic and novel methods,
 - and give recommendation for the best methods to assess the quality of new P fertilizers

Nutrients

Contaminants

P availabilit	Inorganics	Organics	Ecotox	Pathogens
 UGhent LEB /INRAE MTU EuPhoRe 	 UGhent ERI INRAE 	 HVC /UGhent ERI GCU INREA 	• GCU • LEB	• ERI

QA1 -> 5 commercial secondary P fertilizers were used for setting up the methods

QA2 -> 6 Phos4You products tested with the previously defined methods

SL-sludge; LQ-liquor; CL-Chemical leaching; BL- Bio leaching; MA-MicroAlgae; CCP-Crab carapace phosphate; PI- Pyrolysis/Incineration

21-22.09.2021,Essen&online | Final Phos4You conference | Ana Robles-Aguilar |UGhent | Slide n°

5

Drying

- Fertilizers were dried at room T, 50°C, and 105°C
- Samples should be dried at low temperatures (<50°C) and kept in a desiccator prior to analysis for preservation of their moisture content

Grinding

- Chemical composition of TSP after grinding with stainless steel vs agate balls showed that: Cr and Ni in TSP ground with agate and stainless gave the same results
- As occasional wearing out may occur during grinding agate should be preferred over stainless steel jars and balls

Inorganics: P extraction methods

Nutrients and contaminants

		EXTRACT RATIO,		1000000	
METHOD	EXTRACT	mL	MASS, g	100000	
Closed microwave digest	HNO ₃ :HCl	2.5:7.5	0.15	10000	
with Aqua Regia (UGhent)		(1:3 ratio)		1000	
Closed microwave digest	HNO ₃ :HCl	1.2:4.8	0.25	100	
with Aqua Regia (ERI)	_	(1:4 ratio)	2	10	•
Closed microwave digest				1	
with Nitric acid/hydrogen	$HNO_3:H_2O_2$	5:1.5	0.25 3	0 4	
peroxide (ERI)					0 100 100000

- Two AR and HNO3/H₂O₂ "pseudo –total" methods were found comparable for most of the elements tested
- CNS gave comparable Sulphur concentrations as AR1, AR2, Nitric/Peroxide (with slight deviations in the case of Ashes)
- Automated and simple elemental methods (CHN & Hg) are robust and sensible

Inorganics: analyses of solubility

	Γ	ИЕТН	OD				EX	TRAC	Т	E	XTRA	CT R	ATIO,	, mL		MA	SS,	g
	W	ater	(ERI)					H ₂ O			25					0.5		
	2% Ci	2% Citric acid (ERI) C ₆ H ₈ O ₇ 25				0.5												
HIGH		S	Na	к	Mg	Ni	Р	Са	Со	Zn	Mn	Cu	Cd	AI	Cr	Fe	Pb	As
	TSP	81.4	71.0	99.4	90.6	68.2	99.7	77.8	44.7	65.9	62.0	12.7	44.0	18.1	11.2	1.9	~	~
ct	BioP1	31.2	76.1	81.2	38.3	33.8	1.6	5.1	16.2	3.9	3.0	20.3	~	~	1.9	1.3	~	~
and	P-Salt-3	43.0	90.1	77.3	30.0	29.7	1.7	4.9	20.7	~	0.3	15.0	~	~	0.0	~	~	~
roc	Ash3	66.7	23.8	28.0	~	~	~	0.3	~	~	~	~	~	14.8	2.3	~	~	~
đ	P-Salt-4	20.3	36.7	8.3	12.1	~	8.1	0.1	~	~	0.1	4.3	~	~	~	~	~	~
	Ash2.2	67.8	3.0	0.7	1.0	~	0.3	0.8	~	~	~	~	~	0.5	~	~	~	~
	BioP2	28.9	15.2	14.0	5.5	~	0.1	0.1	~	~	~	~	~	~	~	~	~	~
LOW				_													_	
		HIC	GH				Ele	men	t solı	ıbilit	ty in	wate	er					LOW

- P, Mg, K, S, and Na are readily soluble components
- toxic elements of concern (i.e., Pb, As, Cd) are rather unavailable

8

P availability: method compariso hostYou

- Paralleled pot trials were set using the same design and TSP as a reference material
 - Comparable shoot P concentrations were measured in pot trials at UGhent and L
 - Comparable dry matter yield were measured in pot trials at UGhent and MTU
- Plant P parameters were further used to assess quicker P methods
 - Common chemical and alternative P availability methods

P availability: Fertilizer P extraction methods

Publication in preparation: ۲

"Comparison of methods to assess phosphorus availability of secondary phosphorus fertilizers" Bogdan et al.

Example: Correlation (Pearson, r) plant P uptake (mg P g fert.⁻¹) of fertilizer during seven-month trial with chemically extracted P (mg P g fert.⁻¹) using standard fertilizer methods. Values in brackets represent r calculated for secondary P fertilizers only, excluding TSP.

Extraction	P dose,	plant P upt	ake per P ap	plied, mg P k	g fert1				
method,	mg P pot ⁻¹	1 st Cut	2 nd Cut	3 rd Cut	4 th Cut	5 th Cut	6 th Cut	7 th Cut	Cumulative
mg P kg fert. ⁻¹									
WAT	35	0.835** (0.902**)	0.884** (0.854**)	0.901** (0.864**)	0.825** (0.841**)	0.153 (0.628**)	0.441* (0.894**)	0.039 (0.834**)	0.345 (0.879**)
MA	35	0.882** (0.762**)	0.933** (0.838**)	0.902** (0.828**)	0.916** (0.798**)	0.482* (0.586**)	0.829** (0.912**)	0.589** (0.894**)	0.686** (0.732**)

- MW HN, MW AR, MA, CA, NAC, AL AA) were strongly correlated to plant P uptake over time •
- WAT, CACL, BR 2 and MECH 3 extraction provided a good correlation over time
 - if secondary P fertilizers are examined separated from TSP confirming secondary P fertilizers slowrelease effect
- The lowest correlation was obtained with the Olsen method

MA-mineral acids, MW AR-microwave digestion aqua regia, MW NA-microwave digestion nitric acid, NAC-neutral ammonium citrate, CA-2% citric acid, AL AA-ammonium lactate acetic acid buffer, MEH 3-Mehlich 3, BR 2-Bray 2, OLS- Olsen's, WAT-water, CACL-0.01% Calcium chloride, *Nit/peroxide -microwave digestion nitric acid/peroxide* 21-22.09.2021,Essen&online | Final Phos4You conference | Ana Robles-Aguilar | UGhent | Slide n°

P availability Other P measurement methods

Rhizon soil moisture samplers a quick method

- The P in substrate solution: struvites >> than in other fertilizers
- For ashes, the differences between two time points proved the slow P release patter
- Pearson correlation coefficient, r, between the all fertilizer shoot P and substrate pore water P on sand after 4 cuts was 0.72

Lipid P biomarker as a pertinent biomarker for assessment of P availability

• Shoot P concentration correlate **positively and significantly** with the shoot PC/DGDG, %C16:1t and Root Lipid P Index

Root P lipid and leaf PC/DGDG indexes should be considered in FR

	Leaf P concentration	Leaf PC/DGDG	Root P lipid Index	%C16:1t	Leaf fresh biomass
Leaf P	1	0.97***	0.83***	0.92***	0.86***
concentration					
Leaf PC/DGDG		1	0.84***	0.85***	0.77**
Root P lipid Index			1	0.89***	0.69*
%C16:1t				1	0.91***
Leaf fresh biomass					1

Organics

Persistent organic pollutants (POPS)

- methods are standardized
- Some PFAS were detected in recovered P fertilizers

Recommendation

- not all POPs e.g. PFAS are currently listed in the legislation
- PFAS presence is concerning given their propensity to persist and bio-accumulate

List	Common Name	Structure	List	Common Name	Structure
EPA, SCF, EU	Benzo(a) pyrene	88	EPA, SCF, EU	Dibenz[a,/i] anthracene	දින
EPA	Acenaphthene	8	EU+SCF	Dibenzo [a,e]pyrene	ಯ್ದ
EPA	Acenaphthylene	8	EU+SCF	Dibenzo [a,h]pyrene	
EPA	Anthracene	∞	EU+SCF	Dibenzo [a,/]pyrene	ŝ
EPA, SCF, EU	Benz[a] anthracene	യു	EU+SCF	Dibenzo [a,/]pyrene	с уу
EPA,	Benzo(b)	and the	EPA	Fluoranthene	8
		PFHxS	FOA	rene	∞
	PFO	PENA		(1,2,3- rene	6860
	Polyfluoro- alkyls		PFDA	ethyl sene	ŝ
		Perfluoro- alkyls		halene	∞
Fam	ily Tree of Juoroalkyl and	DEAC		ithrene	3
poly Subs	fluoroalkyl stances	PFAS	3	ene	8

Persistent organic pollutants (POPs): Organochlorines (OCs), polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs) and perfluoroalkyl substances (PFAS)

Organics

Untargeted approach (HRMS)

 identified a broader range of potential organic compounds compared to targeted

Recommendation

- This type of analysis may be a useful tool for the evaluation of
 - highly rich organic fertilizing materials
 - fertilizing materials produced from various wastewater sources

13

Organics

Pharmaceuticals, pesticides and hormones by coupled UHPLC-MSMS

- two methods
 - 1) the most readily 'water' soluble fraction
 - 2) and a **specific QuEChERS** (quick, easy, cheap, effective, rugged, and safe) solvent extraction method
- The highest concentrations were detected in the organic fertilizing materials
- Using the QuEChERS concentrations of 45 compounds were qualified in the dried sewage sludge FeP, but only 20 using water extraction
- Two hormones and two pesticides were detected only in P salt produced from sludge (having the highest organic and total carbon among the P salts)

Recommendation

Slide n°

- Organic carbon is a good indicator o
- QuEChERS method can be used to pesticides and hormones

Interreg

Phos4You

nic pollutants

tect pharmaceuticals,

North-West Europe

Ecotox

Triad approach

- The Tier 1 of Triad approach utilizes five ISO published ecotoxicological test systems
- **Earthworm avoidance test** the tested fertilizers demonstrated an effect, especially at the higher application rates

Omega - 3 index

- No toxic effect was observed for P salt SL, P salt CL and ASH PI
- For **CCP** the Omega-3 Index decreased but only at 300kg P₂O₅ ha⁻¹

Recommendation

- The Tier 1 Triad approach outlined in ISO 19204 (ISO, 2017) appears suitable as a primary screen of fertilizers derived from wastewater
- Omega 3 index (NF X31-233, ISO 21479) is recommended to evaluate the overall toxicity of the recovered P-fertilizers

• Methods used for those analyses are rather standardized

CFU	J in 1 g	Presence//	Absence in 1 g	Presence/Absence in 25 g	Aerobic
E. coli	Enterococ cus spp.	E. coli	Enterococcu s spp.	Salmonella spp.	count

• Positive growth of Gram variable rod-shaped bacteria (not defined in legislation) was identified in organic rich P salt

Recommendation

 several microbial colonies, other than the one defined in the legislation were detected and their inspection may be advisable to ensure the safety of the novel P fertilizing materials

Phos4You contribution towards EU standard

 Common manuscript with recommended harmonization from Phos4you results

Thank you

Dr. Ana Robles Ana.roblesaguilar@ugent.be

Prof. Dr. Erik Meers Erik.meers@ugent.be

Investigated parameters:

- Major elemental analyses by CNS analyzer ; total mercury by automated AAS method
- Pharmaceuticals/hormones/pesticides by coupled UHPLC-MSMS: two extraction methods i) the most readily 'water' soluble fraction, ii) a specific QuEChERS (quick, easy, cheap, effective, rugged, and safe) solvent extraction to quantify a large range of contaminants commonly found in wastewaters (56 priority and emerging substances)
- Major (P) and trace elements in plants by ICP-OES and ICP-MS

Highlights of the observations:

- The organic fertilizing products contain the highest concentrations in organic carbon and organic contaminants
- Using solvent extraction (QuEChERS), 3 to 5 pharmaceuticals were quantified per product, generally at low concentrations
- 2 pesticides (diuron and its metabolite DCPMU) were quantified at low concentrations only in P-salt and BioP1
- 2 hormones were quantified only in P-salt produced from sludge (with the highest organic and total carbon content)
- Fewer compounds were quantified using water extraction

Recommendations:

- Automated and simple elemental methods (CHN & Hg) are robust and sensible
- The QuEChERS method is a strong extraction method that can be used to effectively detect and quantify priority and emerging substances potentially present in fertilizers
- Organic carbon is a good indicator of the presence of organic pollutants in the products

Munster Technological University - Highlights

Investigated parameters

- Production of an artificial mineral based growing medium.
- Analysis of the growth response of the recovered calcium phosphate (Psalt4_SL) produced at Macroom WWTP using the Struvia pilot plant.

Highlights and observations

- Over five design generations, an artificial growing medium was produced from commercially available mineral products, creating a uniform and repeatable platform to test P fertilisers.
- The 5G growing medium has deficient levels of P which assists the analysis of P availability of applied fertiliser.
- The 5G growing medium presents similar physical and chemical characteristics to a typical Irish soil.
- The recovered phosphate (Psalt4_SL) produced a comparable dry matter yield to TSP over the 17 week trial (Figures 1 & 2).

Recommendations

• Where possible future growth trials should reflect fertiliser end use conditions, this may be achieved by using a growing medium with similar physical and chemical properties to a range of typical agricultural soils.

Figure 1: Test case growth comparison from the left: TSP,Psalt4_SL, STRLQ and Control.

Figure 2: Combined grass DM yields comparing fertiliser performance.

20

Quality assurance of recovered P

Investigated parameters in mono-incineration ashes:

ds, org stof, Cd, Cr III, Cu, Ni, Pb, Zn, Mo, Sb, Hg, Al, Ca, Fe, K, Mg, Ma, P, (PO4 en P2O5), S, S als SO4, SO3, Si,Be, Se, Te, Tl, Mn, Sn, V, W, en Cr VI

Highlights of the observations:

- challenges in P-recovery techniques are (partly) related to high Pb, Arsenic, iron and aluminium in ashes.
- Extraction methods in lab: Hf or aqua regia, give slightly difference in results
- No need to analyse for dioxins, organics, as these are < d.l. due to high T in incineration process.

Recommendations when moving towards a more standardized approach:

- Always use same extraction procedure (and preferable same lab)
- Improtant for possible future end of waste needs for recovered P

Investigated parameters :

- P availability : lipid biomarkers (root P lipid and leaf PC/DGDG indexest Furple remodelling of some lipids under P-deficient conditions
- Ecotoxicity : ecotoxicological test using the Omega-3 Index calculated from the leaf fatty acid composition of *Lactuca sativa* (NF X31-233, ISO 21479)

Highlights of the observations :

- Root P lipid and leaf PC/DGDG indexes : both methods were able to distinguish P availability between the secondary P-fertilizers. Strong correlations were observed between these lipid biomarkers and leaf P concentration.
- Omega-3 Index : Slight effects were observed with some of the secondary P-fertilizers at the highest concentration. However, the secondary P-fertilizers did not lead to strong toxicity.

Recommendations :

- P availability : Root P lipid and leaf PC/DGDG indexes should be strongly considered in a more standardized approach. These methods bring additional insight as they reflects P's level that plants can efficiently metabolize. The leaf PC/DGDG index is more recommended since it does not require sacrifice of plants unlike the root P lipid Index.
- Ecotoxicity : The Omega-3 index (NF X31-233, ISO 21479) is recommended to evaluate the overall toxicity of the secondary P-fertilizers

Interreg

Investigated parameters

- Polymers and surfactants; Perfluorinated alkyl substances (PFAS) & Untargeted analysis by high resolution mass spectrometry (HRMS)
- Ecotoxicity earthworm avoidance, inhibition of: *Lactuca sativa* germination, dehydrogenase activity of *Arthrobacter globiformis* and microtox bioluminescence.

Polymers and surfactants - Although time consuming, polymers and surfactants (including benzalkonium compounds) detected in the products.

PFAS - Low concentrations (below the limits in drinking water) of these pollutants were detected and quantified in some products.

Untargeted Analysis by HRMS - The untargeted HRMS analysis worked well and identified a broader range of potential organic compounds rather than a few targeted pollutants. No illegal or highly toxic chemicals were determined in any of the products.

Ecotoxicity - Evaluation of the recovered P fertilizers indicates that there was no toxicity caused by these products identified. However, the recovered P fertilizers did have a slight impact in the soil organisms and plants growing in the amended soils.

Recommendations:

PFAS - Quantitation of PFAS should be included to monitor these new POPs as well as the original POPs (PCBs and PAHs etc). **Untargeted** – This state of the art analysis should be developed further as an initial screening and monitoring process to provide consumer confidence.

Ecotoxicity - Soil quality TRIAD approach (Toolbox T-I: Toxicology) (ISO, 2017) is recommended when the overall toxicity of the recovered P products is evaluated.

Phos4you WPT2 plan towards EU standardization

GHENT UNIVERSITY

Phos4you WPT2 Nutrients and safety of new fertilizing materials

- P salt CL had a fast initial P release same as TSP
- P salt CL was having the highest concentrations of P, but also other contaminants compared to P salt4 SL and P salt5 BL
- P salt5 BL as produced from liquid fraction of sludge was the purest in terms of contaminates

Ashes

- P availability of ASH PI stayed limited by high concentration of Fe
- The presence of other elements and its bound to P in ASH PI is most likely the reason why it was not affected by substrate type and maintained comparable P release at both substrates tested
- Rather no or low organic pollutants were detected in ASH PI but higher concentrations of inorganic contaminants and other trace elements compared to TSP were detected in ash-based materials.

Bio phosphates

- For MA a comparable shoot dry matter as TSP was observed on sand
 - a higher shoot dry matter than TSP from the 3rd cut onwards, suggesting a delay in growth attributed to a delay in mineralization of P as a consequence of high carbon concentration in MA

Interreg I

Phos4You

North-West Europe

- MA had significantly higher and comparable shoot P concentrations to TSP on substrate 1 and 2
- MA contained higher concentrations of contaminants than TSP, but within legislative limits, as being produced from wastewater after primary settling step in WWTP
- CCP achieved a lower dry matter compared to the commercial TSP treatment
- CCP treatment was able to increase shoot P concentration compared to the unfertilised treatment (ZeroP) but lower than the commercial TSP treatment
 - It is possible that the presence of calcium carbonate might have lowered the decomposition rate of the fertiliser
- CCP was the purest product (better than TSP) in terms of inorganic contaminants, since produced from the effluent wastewater of a small WWTP
- Several organic pollutants were detected in products that had high carbon concentration, CCP and MA

Problem statement

- Different response criteria and descriptive terms for QA of secondary P fertilizers have been used in the literature of the past decades
- These differences make it difficult to compare results obtained by using different techniques in different laboratories
- In an attempt to improve this situation Phos4You WP2 aim to propose protocols for the QA of secondary P products

Outline

- Key findings concerning methods and assessed criteria
- Summary and conclusions for proposed EU standard to assess quality of novel P containing products regarding fertiliser value and contaminant risks

P availability - Recommendation

- Aqua regia and nitric acid
 - method can be conducted in various modifications => stricter standard needed
 - MW over hot plate
 - MW protocol should be standardized
 - VS

28

- Mineral acids (MA) protocol • possibility for errors caused by the evaporation and overheating of the novel P fertilizers
 - should be further tested in closed MW
- 2% Citric acid (CA) is defined in FR as only applicable to Basic slag
 - its easy to use
 - often, as in our study, disputed as suitable for analysis of more than one element
 - it may be suitable for struvites at least
- Neutral ammonium citrate (NAC) method
 - deviations have been reported if the method was repeated *MW* = *microwave*

Sample preparation

Drying

QA1-> Comparison of various drying Temperatures (desicator-50-105°C)

Recommendation

- High drying temperatures (> 50°C) were found unsuitable for the non-thermally treated products
- Drying of thermally treated products at high temperatures (105°C) does not affect their dry matter content and is thus also not required for their sample preparation
- Samples should be dried at low temperatures (<50°C) and kept in a dissector prior to analysis for preservation of their moisture content
- QA2-> All P recovery processes had drying integrated in their production line (Dry matter results confirmed that all products have DM > 90 %) => No additional drying was needed

AB28 perhaps sample preparation can be reduced or erased Aleksandra Bogdan; 06.09.2021

Sample preparation

Grinding

All products were ground into fine powder

QA1-> Grinding using ball mills of stainless steel (and different materials) jars and balls

QA2-> Grinding using one ball mill with agate jars and balls

Chemical composition of TSP after grinding with stainless steel vs agate balls showed that :

- Cr and Ni in TSP ground with agate and stainless gave the same results

Recommendation

- As occasional wearing out may occur during grinding agate should be preferred over stainless steel jars and balls

Inorganics: analyses of solubility

• water and citric acid extracts indicate how the solubility of elements varies by product

	S	Na	К	Mg	Ni	Р	Са	Со	Zn	Mn	Cu	Cd	AI	Cr	Fe	Pb	As
TSP	81.4	71.0	99.4	90.6	68.2	99.7	77.8	44.7	65.9	62.0	12.7	44.0	18.1	11.2	1.9	~	~
BioP1	31.2	76.1	81.2	38.3	33.8	1.6	5.1	16.2	3.9	3.0	20.3	~	~	1.9	1.3	~	~
P-Salt-3	43.0	90.1	77.3	30.0	29.7	1.7	4.9	20.7	~	0.3	15.0	~	~	0.0	~	~	~
Ash3	66.7	23.8	28.0	~	~	~	0.3	~	~	~	~	~	14.8	2.3	~	~	~
P-Salt-4	20.3	36.7	8.3	12.1	~	8.1	0.1	~	~	0.1	4.3	~	~	~	~	~	~
Ash2.2	67.8	3.0	0.7	1.0	~	0.3	0.8	~	~	~	~	~	0.5	~	~	~	~
BioP2	28.9	15.2	14.0	5.5	~	0.1	0.1	~	~	~	~	~	~	~	~	~	~
	HIG	iH				Ele	men	t solu	ıbilit	y in	wate	er				L	ow
	TSP BioP1 P-Salt-3 Ash3 P-Salt-4 Ash2.2 BioP2	S TSP 81.4 BioP1 31.2 P-Salt-3 43.0 Ash3 66.7 P-Salt-4 20.3 Ash2.2 67.8 BioP2 28.9	S Na TSP 81.4 71.0 BioP1 31.2 76.1 P-Salt-3 43.0 90.1 Ash3 66.7 23.8 P-Salt-4 20.3 36.7 Ash2.2 67.8 3.0 BioP2 28.9 15.2	S Na K TSP 81.4 71.0 99.4 BioP1 31.2 76.1 81.2 P-Salt-3 43.0 90.1 77.3 Ash3 66.7 23.8 28.0 P-Salt-4 20.3 36.7 8.3 Ash2.2 67.8 3.0 0.7 BioP2 28.9 15.2 14.0	S Na K Mg TSP 81.4 71.0 99.4 90.6 BioP1 31.2 76.1 81.2 38.3 P-Salt-3 43.0 90.1 77.3 30.0 Ash3 66.7 23.8 28.0 ~ P-Salt-4 20.3 36.7 8.3 12.1 Ash2.2 67.8 3.0 0.7 1.0 BioP2 28.9 15.2 14.0 5.5	S Na K Mg Ni TSP 81.4 71.0 99.4 90.6 68.2 BioP1 31.2 76.1 81.2 38.3 33.8 P-Salt-3 43.0 90.1 77.3 30.0 29.7 Ash3 66.7 23.8 28.0 ~ ~ P-Salt-4 20.3 36.7 8.3 12.1 ~ Ash2.2 67.8 3.0 0.7 1.0 ~ BioP2 28.9 15.2 14.0 5.5 ~	S Na K Mg Ni P TSP 81.4 71.0 99.4 90.6 68.2 99.7 BioP1 31.2 76.1 81.2 38.3 33.8 1.6 P-Salt-3 43.0 90.1 77.3 30.0 29.7 1.7 Ash3 66.7 23.8 28.0 ~ ~ ~ P-Salt-4 20.3 36.7 8.3 12.1 ~ 8.1 Ash2.2 67.8 3.0 0.7 1.0 ~ 0.3 BioP2 28.9 15.2 14.0 5.5 ~ 0.1	S Na K Mg Ni P Ca TSP 81.4 71.0 99.4 90.6 68.2 99.7 77.8 BioP1 31.2 76.1 81.2 38.3 33.8 1.6 5.1 P-Salt-3 43.0 90.1 77.3 30.0 29.7 1.7 4.9 Ash3 66.7 23.8 28.0 ~ ~ ~ 0.3 P-Salt-4 20.3 36.7 8.3 12.1 ~ 8.1 0.1 Ash2.2 67.8 3.0 0.7 1.0 ~ 0.3 0.8 BioP2 28.9 15.2 14.0 5.5 ~ 0.1 0.1	S Na K Mg Ni P Ca Co TSP 81.4 71.0 99.4 90.6 68.2 99.7 77.8 44.7 BioP1 31.2 76.1 81.2 38.3 33.8 1.6 5.1 16.2 P-Salt-3 43.0 90.1 77.3 30.0 29.7 1.7 4.9 20.7 Ash3 66.7 23.8 28.0 ~ ~ ~ 0.3 ~ P-Salt-4 20.3 36.7 8.3 12.1 ~ 8.1 0.1 ~ Ash2.2 67.8 3.0 0.7 1.0 ~ 0.3 0.8 ~ BioP2 28.9 15.2 14.0 5.5 ~ 0.1 0.1 ~	S Na K Mg Ni P Ca Co Zn TSP 81.4 71.0 99.4 90.6 68.2 99.7 77.8 44.7 65.9 BioP1 31.2 76.1 81.2 38.3 33.8 1.6 5.1 16.2 3.9 P-Salt-3 43.0 90.1 77.3 30.0 29.7 1.7 4.9 20.7 ~ Ash3 66.7 23.8 28.0 ~ ~ ~ 0.3 ~ ~ Ash3 66.7 23.8 28.0 ~ ~ 8.1 0.1 ~ ~ Ash3 66.7 23.8 28.0 ~ ~ ~ 0.3 ~ ~ Ash3 66.7 23.8 28.0 ~ ~ 8.1 0.1 ~ ~ BioP2 28.9 3.0 0.7 1.0 ~ 0.3 0.8 ~ ~ HIGH HIGH Element solution 8.1 0.1 0.1 ~ ~ <th< th=""><th>S Na K Mg Ni P Ca Co Zn Mn TSP 81.4 71.0 99.4 90.6 68.2 99.7 77.8 44.7 65.9 62.0 BioP1 31.2 76.1 81.2 38.3 33.8 1.6 5.1 16.2 3.9 3.0 P-Salt-3 43.0 90.1 77.3 30.0 29.7 1.7 4.9 20.7 ~ 0.3 Ash3 66.7 23.8 28.0 ~ ~ ~ 0.3 ~ ~ ~ 0.1 Ash3 66.7 23.8 28.0 ~ ~ ~ 0.3 ~ ~ ~ 0.1 Ash3 66.7 23.8 28.0 ~ ~ ~ 0.3 ~ ~ ~ ~ BioP2 27.8 3.0 0.7 1.0 ~ 8.1 0.1 ~ ~ ~ BioP2 28.9 15.2 14.0 5.5 ~ 0.1 0.1 ~ <t< th=""><th>S Na K Mg Ni P Ca Co Zn Mn Cu TSP 81.4 71.0 99.4 90.6 68.2 99.7 77.8 44.7 65.9 62.0 12.7 BioP1 31.2 76.1 81.2 38.3 33.8 1.6 5.1 16.2 3.9 3.0 20.3 P-Salt-3 43.0 90.1 77.3 30.0 29.7 1.7 4.9 20.7 ~ 0.3 15.0 Ash3 66.7 23.8 28.0 ~ ~ ~ 0.3 ~ 0.3 15.0 Ash3 66.7 23.8 28.0 ~ ~ ~ 0.3 ~ ~ ~ P-Salt-4 20.3 36.7 8.3 12.1 ~ 8.1 0.1 ~ ~ 0.1 4.3 Ash2.2 67.8 3.0 0.7 1.0 ~ 0.1 0.1 ~ ~ ~ ~ BioP2 28.9 15.2 14.0 5.5</th><th>S Na K Mg Ni P Ca Co Zn Mn Cu Cd TSP 81.4 71.0 99.4 90.6 68.2 99.7 77.8 44.7 65.9 62.0 12.7 44.0 BioP1 31.2 76.1 81.2 38.3 33.8 1.6 5.1 16.2 3.9 3.0 20.3 ~ P-Salt-3 43.0 90.1 77.3 30.0 29.7 1.7 4.9 20.7 ~ 0.3 15.0 ~ Ash3 66.7 23.8 28.0 ~ ~ ~ 0.3 ~ ~ ~ ~ 0.3 ~ ~ ~ ~ 0.3 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~</th></t<></th></th<> <th>S Na K Mg Ni P Ca Co Zn Mn Cu Cd Al TSP 81.4 71.0 99.4 90.6 68.2 99.7 77.8 44.7 65.9 62.0 12.7 44.0 18.1 BioP1 31.2 76.1 81.2 38.3 33.8 1.6 5.1 16.2 3.9 3.0 20.3 ~~ P-Salt-3 43.0 90.1 77.3 30.0 29.7 1.7 4.9 20.7 ~ 0.3 15.0 ~~ ~~ Ash3 66.7 23.8 28.0 ~ ~ ~ 0.3 ~~ ~~ 0.1 4.8 P-Salt-4 20.3 36.7 8.3 12.1 ~ 8.1 0.1 ~ ~ 0.1 4.33 ~~ ~ Ash2.2 67.8 3.0 0.7 1.0 ~ 0.1 0.1 ~ ~ ~ ~ ~ ~ 0.5 6.8 0.1 0.1 ~ ~ ~</th> <th>S Na K Mg Ni P Ca Co Zn Mn Cu Cd Al Cr TSP 81.4 71.0 99.4 90.6 68.2 99.7 77.8 44.7 65.9 62.0 12.7 44.0 18.1 11.2 BioP1 31.2 76.1 81.2 38.3 33.8 1.6 5.1 16.2 3.9 3.0 20.3 ~ ~ 1.9 P-Salt-3 43.0 90.1 77.3 30.0 29.7 1.7 4.9 20.7 ~ 0.3 15.0 ~ ~ 0.0 Ash3 66.7 23.8 28.0 ~ ~ ~ 0.3 ~ ~ ~ 0.0 Ash3 66.7 23.8 28.0 ~ ~ ~ 0.3 ~ ~ ~ ~ 0.0 ~ ~ ~ 0.0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~</th> <th>S Na K Mg Ni P Ca Co Zn Mn Cu Cd Al Cr Fe TSP 81.4 71.0 99.4 90.6 68.2 99.7 77.8 44.7 65.9 62.0 12.7 44.0 18.1 11.2 1.9 BioP1 31.2 76.1 81.2 38.3 33.8 1.6 5.1 16.2 3.9 3.0 20.3 ~ ~ 1.9 1.3 P-Salt-3 43.0 90.1 77.3 30.0 29.7 1.7 4.9 20.7 ~ 0.3 15.0 ~ ~ 0.0 ~ Ash3 66.7 23.8 28.0 ~ ~ ~ 0.3 ~ ~ 0.3 ~ ~ ~ 0.0 ~ ~ ~ 0.0 ~ ~ ~ 0.0 ~ ~ ~ 0.0 ~ ~ ~ 0.0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ <</th> <th>S Na K Mg Ni P Ca Co Zn Mn Cu Cd Al Cr Fe Pb TSP 81.4 71.0 99.4 90.6 68.2 99.7 77.8 44.7 65.9 62.0 12.7 44.0 18.1 11.2 1.9 ~ BioP1 31.2 76.1 81.2 38.3 33.8 1.6 5.1 16.2 3.9 3.0 20.3 ~ ~ 1.9 ~ P-Salt-3 43.0 90.1 77.3 30.0 29.7 1.7 4.9 20.7 ~ 0.3 15.0 ~ ~ 0.0 ~ ~ Ash3 66.7 23.8 28.0 ~ ~ 0.3 ~ ~ ~ 0.1 4.3 ~ ~ 0.0 ~ ~ P-Salt-4 20.3 36.7 8.3 12.1 ~ 8.1 0.1 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ <</th>	S Na K Mg Ni P Ca Co Zn Mn TSP 81.4 71.0 99.4 90.6 68.2 99.7 77.8 44.7 65.9 62.0 BioP1 31.2 76.1 81.2 38.3 33.8 1.6 5.1 16.2 3.9 3.0 P-Salt-3 43.0 90.1 77.3 30.0 29.7 1.7 4.9 20.7 ~ 0.3 Ash3 66.7 23.8 28.0 ~ ~ ~ 0.3 ~ ~ ~ 0.1 Ash3 66.7 23.8 28.0 ~ ~ ~ 0.3 ~ ~ ~ 0.1 Ash3 66.7 23.8 28.0 ~ ~ ~ 0.3 ~ ~ ~ ~ BioP2 27.8 3.0 0.7 1.0 ~ 8.1 0.1 ~ ~ ~ BioP2 28.9 15.2 14.0 5.5 ~ 0.1 0.1 ~ <t< th=""><th>S Na K Mg Ni P Ca Co Zn Mn Cu TSP 81.4 71.0 99.4 90.6 68.2 99.7 77.8 44.7 65.9 62.0 12.7 BioP1 31.2 76.1 81.2 38.3 33.8 1.6 5.1 16.2 3.9 3.0 20.3 P-Salt-3 43.0 90.1 77.3 30.0 29.7 1.7 4.9 20.7 ~ 0.3 15.0 Ash3 66.7 23.8 28.0 ~ ~ ~ 0.3 ~ 0.3 15.0 Ash3 66.7 23.8 28.0 ~ ~ ~ 0.3 ~ ~ ~ P-Salt-4 20.3 36.7 8.3 12.1 ~ 8.1 0.1 ~ ~ 0.1 4.3 Ash2.2 67.8 3.0 0.7 1.0 ~ 0.1 0.1 ~ ~ ~ ~ BioP2 28.9 15.2 14.0 5.5</th><th>S Na K Mg Ni P Ca Co Zn Mn Cu Cd TSP 81.4 71.0 99.4 90.6 68.2 99.7 77.8 44.7 65.9 62.0 12.7 44.0 BioP1 31.2 76.1 81.2 38.3 33.8 1.6 5.1 16.2 3.9 3.0 20.3 ~ P-Salt-3 43.0 90.1 77.3 30.0 29.7 1.7 4.9 20.7 ~ 0.3 15.0 ~ Ash3 66.7 23.8 28.0 ~ ~ ~ 0.3 ~ ~ ~ ~ 0.3 ~ ~ ~ ~ 0.3 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~</th></t<>	S Na K Mg Ni P Ca Co Zn Mn Cu TSP 81.4 71.0 99.4 90.6 68.2 99.7 77.8 44.7 65.9 62.0 12.7 BioP1 31.2 76.1 81.2 38.3 33.8 1.6 5.1 16.2 3.9 3.0 20.3 P-Salt-3 43.0 90.1 77.3 30.0 29.7 1.7 4.9 20.7 ~ 0.3 15.0 Ash3 66.7 23.8 28.0 ~ ~ ~ 0.3 ~ 0.3 15.0 Ash3 66.7 23.8 28.0 ~ ~ ~ 0.3 ~ ~ ~ P-Salt-4 20.3 36.7 8.3 12.1 ~ 8.1 0.1 ~ ~ 0.1 4.3 Ash2.2 67.8 3.0 0.7 1.0 ~ 0.1 0.1 ~ ~ ~ ~ BioP2 28.9 15.2 14.0 5.5	S Na K Mg Ni P Ca Co Zn Mn Cu Cd TSP 81.4 71.0 99.4 90.6 68.2 99.7 77.8 44.7 65.9 62.0 12.7 44.0 BioP1 31.2 76.1 81.2 38.3 33.8 1.6 5.1 16.2 3.9 3.0 20.3 ~ P-Salt-3 43.0 90.1 77.3 30.0 29.7 1.7 4.9 20.7 ~ 0.3 15.0 ~ Ash3 66.7 23.8 28.0 ~ ~ ~ 0.3 ~ ~ ~ ~ 0.3 ~ ~ ~ ~ 0.3 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	S Na K Mg Ni P Ca Co Zn Mn Cu Cd Al TSP 81.4 71.0 99.4 90.6 68.2 99.7 77.8 44.7 65.9 62.0 12.7 44.0 18.1 BioP1 31.2 76.1 81.2 38.3 33.8 1.6 5.1 16.2 3.9 3.0 20.3 ~~ P-Salt-3 43.0 90.1 77.3 30.0 29.7 1.7 4.9 20.7 ~ 0.3 15.0 ~~ ~~ Ash3 66.7 23.8 28.0 ~ ~ ~ 0.3 ~~ ~~ 0.1 4.8 P-Salt-4 20.3 36.7 8.3 12.1 ~ 8.1 0.1 ~ ~ 0.1 4.33 ~~ ~ Ash2.2 67.8 3.0 0.7 1.0 ~ 0.1 0.1 ~ ~ ~ ~ ~ ~ 0.5 6.8 0.1 0.1 ~ ~ ~	S Na K Mg Ni P Ca Co Zn Mn Cu Cd Al Cr TSP 81.4 71.0 99.4 90.6 68.2 99.7 77.8 44.7 65.9 62.0 12.7 44.0 18.1 11.2 BioP1 31.2 76.1 81.2 38.3 33.8 1.6 5.1 16.2 3.9 3.0 20.3 ~ ~ 1.9 P-Salt-3 43.0 90.1 77.3 30.0 29.7 1.7 4.9 20.7 ~ 0.3 15.0 ~ ~ 0.0 Ash3 66.7 23.8 28.0 ~ ~ ~ 0.3 ~ ~ ~ 0.0 Ash3 66.7 23.8 28.0 ~ ~ ~ 0.3 ~ ~ ~ ~ 0.0 ~ ~ ~ 0.0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	S Na K Mg Ni P Ca Co Zn Mn Cu Cd Al Cr Fe TSP 81.4 71.0 99.4 90.6 68.2 99.7 77.8 44.7 65.9 62.0 12.7 44.0 18.1 11.2 1.9 BioP1 31.2 76.1 81.2 38.3 33.8 1.6 5.1 16.2 3.9 3.0 20.3 ~ ~ 1.9 1.3 P-Salt-3 43.0 90.1 77.3 30.0 29.7 1.7 4.9 20.7 ~ 0.3 15.0 ~ ~ 0.0 ~ Ash3 66.7 23.8 28.0 ~ ~ ~ 0.3 ~ ~ 0.3 ~ ~ ~ 0.0 ~ ~ ~ 0.0 ~ ~ ~ 0.0 ~ ~ ~ 0.0 ~ ~ ~ 0.0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ <	S Na K Mg Ni P Ca Co Zn Mn Cu Cd Al Cr Fe Pb TSP 81.4 71.0 99.4 90.6 68.2 99.7 77.8 44.7 65.9 62.0 12.7 44.0 18.1 11.2 1.9 ~ BioP1 31.2 76.1 81.2 38.3 33.8 1.6 5.1 16.2 3.9 3.0 20.3 ~ ~ 1.9 ~ P-Salt-3 43.0 90.1 77.3 30.0 29.7 1.7 4.9 20.7 ~ 0.3 15.0 ~ ~ 0.0 ~ ~ Ash3 66.7 23.8 28.0 ~ ~ 0.3 ~ ~ ~ 0.1 4.3 ~ ~ 0.0 ~ ~ P-Salt-4 20.3 36.7 8.3 12.1 ~ 8.1 0.1 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ <

>20% 'water soluble' marked in YELLOW

Inorganics: P extraction methods

Carbon

• CNS (INRAE): Inorganic, organo-mineral and organic secondary P fertilizer

	P salt_CL	P salt_SL	P salt_BL	ASH PI	MA	ССР
Corg., %	4.8	6.1	2.4	<0.15	41.7	8.3

Nutrients and contaminants

METHOD	EXTRACT	EXTRACT RATIO, mL	MASS, g	1	
Closed microwave digest	HNO ₃ :HCl	2.5:7.5	0.15		
with Aqua Regia (UGhent)	_	(1:3 ratio)			3 "Total"
Closed microwave digest	HNO ₃ :HCl	1.2:4.8	0.25		digosts
with Aqua Regia (ERI)		(1:4 ratio)			ulgests
Closed microwave digest				3	
with Nitric acid/hydrogen	HNO ₃ :H ₂ O ₂	5:1.5	0.25		
peroxide (ERI)					2 "Solubility"
Water (ERI)	H ₂ O	25	0.5		indicators
2% Citric acid (ERI)	C ₆ H ₈ O ₇	25	0.5		
					X

GHENT

UNIVERSIT

21-22.09.2021,Essen&online | Final Phos4You conference | Erik Meers | UGhgot | SI

Inorganics: AR – nutrients and contaminants

• Two AR and HNO3/H2O2 "pseudo –total" methods were found rather comparable

AR – Nutrients

	P salt_CL	P salt_SL	P salt_BL	ASH PI	MA	ССР
$AR - P_2O_5, \%$	25	4.9	6.5	14	1.9	2.6

• All fertilizers had CaO and MgO > 1.5 %, while MA had even TN of 6.2 %

AR - Contaminants (Pb, Hg...) and other elements (Fe, Al...)

- ASHes > MA > P salt CL > TSP > CCP
- Copper (Cu) and zinc (Zn) > legislative limit in ASH PI,
- Copper (Cu) > legislative limit in MA
 - but P: Cu or P: Zn ratio is not higher than plant need, so rather micronutrient
- high total chromium (Cr) was found in Psalt CL
 - originates from a industrial wastewater intrusion where the P recovery technology was situated at the time, and would not be expected in typical MWW composition

P availability: Substrate pore water sampling with Rhizons

QA 1 -> Rhizon soil moisture samplers a quick method that can mimic plant P uptake

- a good correlation between the shoot P uptake in plant and P in substrate solution r (p < 0.001)
 18 mg P pot-1 35 mg P pot-1 53 mg P pot-1 2nd 4th
 2nd 4th 2nd 4th 2nd 4th
 2nd 4th 0.806
 0.795
 0.741
 0.806
 0.505
 0.722
 0.664
 Secondary P fertilizers and TSP
 0.743
 0.714
 0.779
 0.651
 0.744
 0.687
- The P in substrate solution: struvites >> than in other fertilizers
- For ashes, the differences between two time points proved the slow P release patter

QA 2 -> Differences between the fertilizer P release at 2 different substrates were also visible in substrate pore water P after 1 cut

- The highest substrate pore water P concentration had TSP and MA, higher at substrate 1 than at substrate 2
- Significantly higher P concentration in substrate pore water and rather comparable among the substrates had P salt CL
- For Zero P the P concentration in substrate pore water was under or near detection, same as for CCP, conference L Erik Means LUGbant L Slide p
- detection same as for CCP
 21-22.09.2021 Essent on the Phose of the Pho

North-West Europe

Phos4You

Organics: Persistent organic pollutants (POPs)

Organochlorine (OC) pesticides, polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAH) and perfluoroalkyl substances (PFAS)

QA1 -> some POPs were detected in FeP **QA 2 ->**

- Several PAHs, PCBs or OCs were detected in products that had high carbon concentration, CCP and MA
- One PCB (53) was found in P salt CL
- Some PFAS were detected all tested secondary P fertilizers

List	Common Name	Structure	List	Common Name	Structure
EPA, SCF, EU	Benzo(a) pyrene	3	EPA, SCF, EU	Olbenz[a,/i] anthracene	Sac
EPA	Acenaphthene	8	EU+SCF	Dibenzo [a,e]pyrene	ಯ್ದ
EPA	Agenaphthylene	8	EU+SCF	Dibenzo [a,b]pyrene	<u> </u>
EPA	Anthracene	∞	EU+SCF	Dibenzo [a,/]pyrene	ಯ್
EPA, SCF, EU	Benz(a) anthraoene	ಯ್	EU+SCF	Dibenzo [a,]pyrene	990 1990
EPA, SCF, EU	Benzo(o) fluoranthene	8	EPA	Fluoranthene	8
SCF. EU	Benzo(/) fluoranthene	88	EPA	Fluorene	∞
EPA, SCF, EU	Benzo(k) fluoranthene	800	EPA, SCF, EU	Indeno[1,2,3- cd[pyrene	6660
EU	Benzo(c)tuorene	000	EU+SCF	5-Methyl chrysene	000
EPA, SCF, EU	Benzo(ght) perylene	සු	EPA	Naphthalene	∞
EPA, SCF, EU	Chrysene	8	EPA	Phenanthrene	3
SCF. EU	Cyclopenta [co]pyrene	88	EPA	Pyrene	88

Findings:

Organic carbon is a good indicator of potential POPs presence

Overall, secondary P products were found to have POPs tested below legislative limits for secondary P fertilizers (PAH₁₀ << 6 mg kg⁻¹ dm; PCB₇ << 0.8 mg kg⁻¹ dm; OC << 20 ng kg⁻¹ (

35

Organics: Pharmaceuticals

QA 1 -> Queschers VS water extraction

- FeP product quantified concentrations of 45 compounds (few ng/g up to 86 ng/g (for amitriptyline) via Queschers and 20 via water
- Only 3 to 8 compounds detectable in the other products
- **QA 2** -> Queschers extraction
- 16 pharmaceuticals were not detected in all the secondary P fertilizers, but few were

[c] µg/kg	P_salt5_BL	P salt 4_SL	Biop 1	Biop 2	P salt3-CL	LQ (µg/kg)
alprazolam	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>0,9</th><th>0,6</th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>0,9</th><th>0,6</th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>0,9</th><th>0,6</th></lq<></th></lq<>	<lq< th=""><th>0,9</th><th>0,6</th></lq<>	0,9	0,6
carbamazepine	<lq< th=""><th>1,5</th><th>11</th><th><lq< th=""><th><lq< th=""><th>1,2</th></lq<></th></lq<></th></lq<>	1,5	11	<lq< th=""><th><lq< th=""><th>1,2</th></lq<></th></lq<>	<lq< th=""><th>1,2</th></lq<>	1,2
diazepam	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>0,8</th><th>0,6</th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>0,8</th><th>0,6</th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>0,8</th><th>0,6</th></lq<></th></lq<>	<lq< th=""><th>0,8</th><th>0,6</th></lq<>	0,8	0,6
metformin	<lq< th=""><th><lq< th=""><th>3,3</th><th><lq< th=""><th><lq< th=""><th>0,8</th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>3,3</th><th><lq< th=""><th><lq< th=""><th>0,8</th></lq<></th></lq<></th></lq<>	3,3	<lq< th=""><th><lq< th=""><th>0,8</th></lq<></th></lq<>	<lq< th=""><th>0,8</th></lq<>	0,8
nordiazepam	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>0,8</th><th>0,6</th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>0,8</th><th>0,6</th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>0,8</th><th>0,6</th></lq<></th></lq<>	<lq< th=""><th>0,8</th><th>0,6</th></lq<>	0,8	0,6
oxazepam	1,0	1,4	1,6	<lq< th=""><th><lq< th=""><th>0,6</th></lq<></th></lq<>	<lq< th=""><th>0,6</th></lq<>	0,6
paracetamol	2,0	21	108	4,3	<lq< th=""><th>0,8</th></lq<>	0,8
theophylline	1,4	21	139	1,9	27	0,6

21-22.09.2021,Essen&online | Final Phos4You conference | Erik Meers | UGhent | Slide n° 36

Organics: untargeted compounds

Flasgow Caledonian

- **QA 1** -> methanol and acetonitrile extraction and analysis with HRMS
 - HRMS determined **numerous organic contaminants**
 - However, since no standards were available the amount can only be estimated
 - Quaternary ammonium compounds consistent with antimicrobials and surfactants were determined in some of the products, particularly **TSP and FeP**
 - Polymer type products were also determined in TSP and FeP. It could not be verified if these were part of the fertiliser as polymers can sometimes be used in slow release products.

QA2 ->

- Suspected polymers in secondary P fertilizers were in higher concentration than in the TSP
- None of the secondary P fertilizers contained higher levels of the Quaternary ammonium compounds when compared t 21-22.09.2021,Essen&online | Final Phos4You conference | Erik Meers | UGhent | Slide n°

Ecotox : omega – 3 - index

QA 1 -> Pot trials according to the standard **NF EN ISO 21479**

- with the fertilizing products applied at a rate of 60 kg P₂O₅ ha⁻¹ showed no phytotoxicity of the P fertilizing products
- QA 2-> The AFNOR standard NF XP31-233 and ISO 21479 test

six rates of fertilizer: 0, 30, 60, 90, 180 and 300kg $P_2O_5ha^{-1}$

- Biomass of lettuce shoots
 - no toxic impact was observed for P salt CL and ASH PI
 - P salt SL and CCP had a linear decrease of the fresh biomass of lettuces

with the increase of the fertilizer concentrations

- Omega 3 index
 - No toxic effect was observed for P salt SL, P salt CL and ASH PI
 - For **CCP** the Omega-3 Index decreased but only at $300 \text{kg P}_2 \text{O}_5 \text{ ha}^2$

Findings

Overall, as fertilizers are typically applied at P doses of 60 kg P₂O₅ha⁻¹ or lower, the use of novel secondary P fertilizers may be considered safe, but attention should be given at the quantity given in time to avoid possible overdosing negative effects, especially in case of CCP and P salt SL³⁸

Gas Chromatography (GC-FID)

P availability: Recommended P dose & experimental Morth-West Europe North-West Europe Phose You Commended P dose & experimental Morth-West Europe Phose You Pho

QA2-> Results based on MA, CCP, ASH PI and P salt CL

- Confirmed the finding that 4 cuts/months is a minimum time needed to observe the slow release effect of secondary P fertilizers
- Longer trial may show full P release capacity of secondary P fertilizers and 21 22 09 2021 Effer MArea Final CCP You conference | Erik Meers | UGhent | Slide n° 39

P availability: Substrate effect **River sand vs artificial mineral** substrate

QA 1 -> washed P-poor **river sand** was shown as an adequate substrate for the repetitive testing of the P availability in the novel secondary P fertilizers

- it has the **low trace element** composition
- the **ability of zero P treatment to become exhausted** within 3 cuts

QA 2 -> Low P substrates can also be used for testing the P retention and release; however, there are discrepancies for some products with the results on P availability obtained by growing plants in the river sand

- **P** uptake on sand : MA > TSP = P salt CL > CCP > ASHPI > ZeroP
- P uptake on artificial mineral substrate: P salt CL > TSP > ASH PI > ASHGC ≥ MA = $CCP \ge Zero P$

Findings

Sand allowed all secondary P fertilizers to express their highest P release potential

40

Physico-chemical characteristics (Presence of clay and all other elements (Fe, Al...), high pH) of artificial mineral substrate reduced the P uptake of all P **fertilizers, especially MA and CCP** 21-22.09.2021,Essen&online | Final Phos4You conference | Erik Meers | UGhent | Slide n°

P availability: Substrate effect Growing medium development

- P salt SL was tested on 3 low P growing mediums (GM) developed within project
- P salt SL proved to have fast P release and comparable shoot dry matter as TSP starting from the 1st cut on all 3 GMs

4 th cut	GM characteristics	GM₁	GM ₂	GM ₃	
O* b y J J J J TSP etter at a P	Granite Sand %	65	60	55	
	Vermiculite ,%	5	10	15	
	рН	6.7 ± 0.48	7.0 ± 0.42	7.3 ± 0.28	
	Morgan's P	0.49	0.49	0.49	
	Morgan's K	84.6	119.6	217.8	
	CEC meq/100g	15.5	13.5	11.25	
	Electrical conductivity (EC) µS cm ⁻¹	21.02	49.9	24.01	
	Bulk Density (g/cm³)	1.21	1.13	1.08	
	Total porosity (%v/v)	31.3	37.1	48.4	
	Air filled porosity (%v/v)	6.6	11.2	14	IN
	Container water capacity (%)	18.84	24.2	27	

P availability P determination methods

• P determination using ICP-OES and spectrophotometric molybdenumblue, modification by Scheel (Van Ranst, 1999), method after 6 chemical P extractions of secondary P fertilizers were compared and found equally applicable

Recommendation

- More procedures for P determination should be added into legislation if not fully replacing the old ones
- Exception: general sensitivity of NAC P extracts to the P determination method used afterwards

21-22.09.2021,Essen&online | Final Phos4You conference | Erik Meers | UGhent | Slide n° 42

Demand for QA standardization

Other emerging tests

- Hormones, Pharmaceuticals
 - Organic pollutants traceability should be under evaluation of each technology (ESPP)
- Ecotoxicity
 - risk assessment tools are welcomed by consumers
- P availability
 - A relevant number of pot trials with Pfertilizers recovered from wastewater treatment has been conducted, but their uneven designs had caused difficulty in interpretation and comparison of the results (*Huygens and Saveyn, 2018; Kratz et al., 2019*).
 - Previous investigations using secondary P fertilizers did not show, in most cases, a good correlation between chemical P extractions and the actual plant P uptake (Duboc et al., 2017; Huygens and Saveyn, 2018; Ylivainio et al., 2021).

"While routine standardised measurement techniques for plastic in soils or biofertilizers do not exist, such techniques can be expected to be developed in the relatively short term." (EIP-AGRI)

