
"made in Europ

Quality assessment of fertilizing P materials recovered from municipal wastewater

Aleksandra Bogdan¹, Ana Alejandra Robles Aguilar¹, Evi Michels¹, Erik Meers¹ ¹ Ghent University Aleksandra.Bogdan@ugent.be; Erik.Meers@UGent.be

1. Introduction

Demand for alternative and renewable phosphorus (P) sources, such as municipal wastewater, has led to production of novel fertilizing P materials.

3. Results and Discussion

Carbon and inorganic content of fertilizing P materials

Carbon and nutrients

- Inorganic, organo-mineral and organic fertilizing P materials
- All fertilizing P materials *aqua regia* (AR) **P content > 1.5 %** P_2O_5
- All fertilizing P materials had CaO and MgO > 1.5 %
- MA with TN of 6.2 % is N-P compound fertilizer

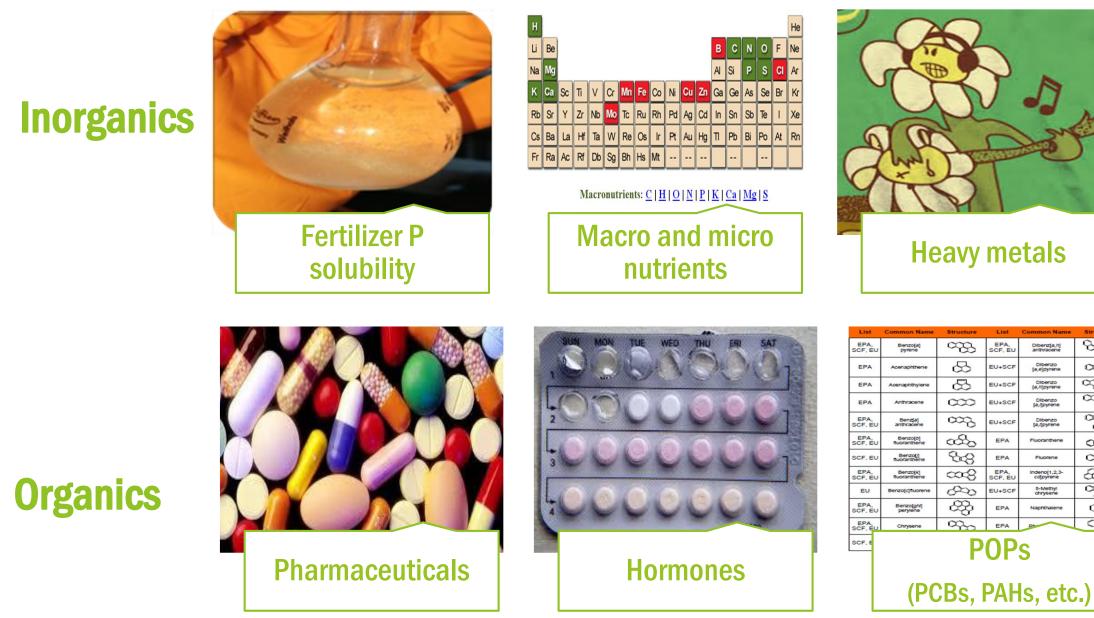
	P salt_CL	P salt_SL	P salt_BL	ASH PI	MA	ССР
C _{org} , %	4.8	6.1	2.4	<0.15	41.7	8.3
$AR - P_2O_5, \%$	25	4.9	6.5	14	1.9	2.6

Contaminants (Pb, Hg...) and other elements (Fe, Al...)

- **Copper (Cu) and zinc (Zn)** in **ASH PI** > EU legislative limit (EC, 2019) and Copper (Cu) in **MA** > EU legislative limit (EC, 2019)
 - However P: Cu and P: Zn ratio were not higher than plant need and thus could be considered micronutrients rather than contaminants

GHENT

UNIVERSITY


provincie Jost-Vlaanderen

- High total chromium (Cr) was found in P salt CL
 - not expected in municipal wastewater, originates from a industrial wastewater intrusion where the P recovery technology was situated

Organic pollutants in fertilizing P materials

- To allow wider application of fertilizing P materials on the market, it is necessary to asses their quality (QA) in terms of:
- Their **nutrient availability** dependency on time, P dose, and growing medium
- Their safety in terms of their chemical inorganic and organic composition, ecotoxicity as well as pathogens content

2. Quality Assessment methodology

Persistent organic pollutants (POPs):

Organochlorine (OC), pesticides, polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAH) and perfluoroalkyl substances (PFAS)

- Several PAHs, PCBs or OCs were detected in fertilizing P materials with high C_{org} concentration, CCP and MA
- One PCB (53) was found in P salt CL
- Some PFAS were detected all tested fertilizing P materials

Overall, fertilizing P materials were found to have POPs tested below legislative limits (EC, 2019) for fertilizing P materials (PAH₁₀ << 6 mg kg⁻¹ dm; PCB₇ << 0.8 mg $kg^{-1} dm; OC << 20 ng kg^{-1} d)$

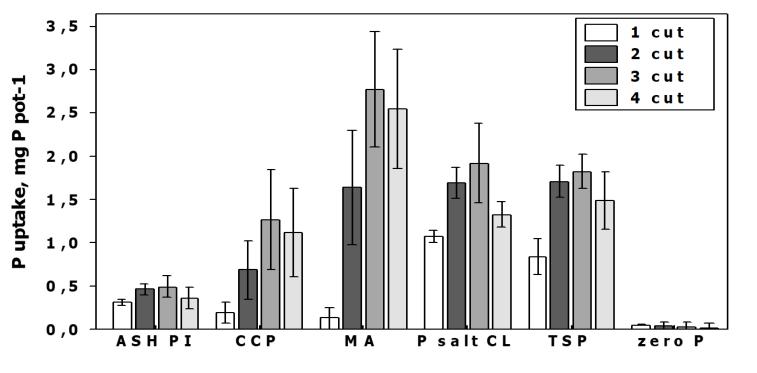
Hormones

- 18 hormones (over 20) < detection in all fertilizing P materials
- Androstenedione and epitestosterone, were detected only in P salt SL

Pharmaceuticals

16 pharmaceuticals were not detected in all the fertilizing P materials. Few pharmaceuticals were quantified (except for ASHPI), generally at low concentrations:

[c] µg/kg	P salt BL	P salt SL	MA	ССР	P salt CL	LQ (µg/kg)
alprazolam	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.9</td><td>0.6</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0.9</td><td>0.6</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0.9</td><td>0.6</td></lq<></td></lq<>	<lq< td=""><td>0.9</td><td>0.6</td></lq<>	0.9	0.6
carbamazepine	<lq< td=""><td>1.5</td><td>11</td><td><lq< td=""><td><lq< td=""><td>1.2</td></lq<></td></lq<></td></lq<>	1.5	11	<lq< td=""><td><lq< td=""><td>1.2</td></lq<></td></lq<>	<lq< td=""><td>1.2</td></lq<>	1.2
diazepam	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.8</td><td>0.6</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0.8</td><td>0.6</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0.8</td><td>0.6</td></lq<></td></lq<>	<lq< td=""><td>0.8</td><td>0.6</td></lq<>	0.8	0.6
metformin	<lq< td=""><td><lq< td=""><td>3.3</td><td><lq< td=""><td><lq< td=""><td>0.8</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>3.3</td><td><lq< td=""><td><lq< td=""><td>0.8</td></lq<></td></lq<></td></lq<>	3.3	<lq< td=""><td><lq< td=""><td>0.8</td></lq<></td></lq<>	<lq< td=""><td>0.8</td></lq<>	0.8
nordiazepam	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.8</td><td>0.6</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0.8</td><td>0.6</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0.8</td><td>0.6</td></lq<></td></lq<>	<lq< td=""><td>0.8</td><td>0.6</td></lq<>	0.8	0.6
oxazepam	1.0	1.4	1.6	<lq< td=""><td><lq< td=""><td>0.6</td></lq<></td></lq<>	<lq< td=""><td>0.6</td></lq<>	0.6
paracetamol	2.0	21	108	4.3	<lq< td=""><td>0.8</td></lq<>	0.8
theophylline	1.4	21	139	1.9	27	0.6


Untargeted compounds

- Higher concentration of several polymers were detected in fertilizing P materials (P salt CL, MA, P salt SL) compared to the TSP
- All fertilizing P materials contained lower levels of the Quaternary ammonium compounds compared to TSP

Plant P availability of fertilizing P materials

Substrate and time effect on plant P uptake and PUE

- This study was used to compare the P release of fertilizing P materials at river sand during four month growth of perennial ryegrass
- Plant P uptake of P salt CL was high from the 1st cut and increased in time
- Plant P uptake of ASH PI was stable and controlled by a high concentration of Fe
- Plant P uptake for MA rich in C_{org}, and CCP rich in Ca and C_{org} increased in time and reached its maximum only after 3rd plant cut
- Four months proved as a minimum time needed for observing the P uptake of fertilizing P materials. Longer trials may show their full P release capacity, especially for MA and CCP
- **Overall fertilizing P material effect:**
- MA > TSP = P salt CL > CCP > ASHPI > Zero P

Leaf and root P biomarkers

Leaf P concentration correlated significantly with the leaf PC/DGDG, %C16:1t and **Root Lipid P Index for both substrates**

	Leaf P concentration	Leaf PC/DGDG	Root P lipid Index	%C16:1t	Leaf fresh biomass
Leaf P concentration	1	0.97***	0.83***	0.92***	0.86***
Leaf PC/DGDG		1	0.84***	0.85***	0.77**
Root P lipid Index			1	0.89***	0.69*
%C16:1t				1	0.91***
Leaf fresh biomass					1

Low P growing medium development and effect on plant dry matter

- P salt SL was tested on 3 low P growing mediums (GM) developed within project
- P salt SL proved to have fast P release and comparable shoot dry matter as TSP starting from the 1st cut on all 3 GMs

GM characteristics	GM₁	GM ₂	GM ₃
Granite Sand %	65	60	55
Vermiculite ,%	5	10	15
рН	6.7 ± 0.48	7.0 ± 0.42	7.3 ± 0.28
Morgan's P	0.49	0.49	0.49
Morgan's K	84.6	119.6	217.8
CEC meq/100g	15.5	13.5	11.25
Electrical conductivity (EC) µS cm ⁻¹	21.02	49.9	24.01
Bulk Density (g/cm³)	1.21	1.13	1.08
Total porosity (%v/v)	31.3	37.1	48.4
Air filled porosity (%v/v)	6.6	11.2	14
Container water capacity (%)	18.84	24.2	27

P salts

Ashes

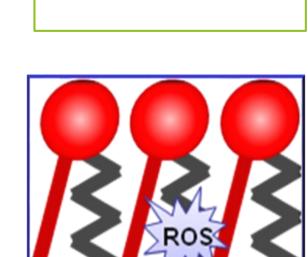
concentration of Fe

Plant P availability

Ecotoxicity

And

Plant dry matter (Substrate effect)



5 6

Correlation of

chemical P/plant P

Field trials

Eco toxicity and Pathogens content in fertilizing P materials

Biomass of lettuce shoots

- The AFNOR standard NF XP31-233 and ISO 21479 test was performed on Lactuca sativa on six rates of fertilizing P materials : 0, 30, 60, 90, 180 and 300kg P_2O_5 ha⁻¹
- Non toxic effect (decrease in the fresh shoot biomass) was observed for P salt CL and ASH PI with increase in the fertilizing P materials dose
- P salt SL and CCP had a linear decrease of the fresh biomass of lettuces with the increasing fertilizing P materials dose **Omega - 3 index**

No decrease (toxic effect) was observed for P salt SL, P salt CL and ASH PI when concentrations of fertilizing P materials were increased

• For CCP the Omega-3 Index decreased at 300kg P₂O₅ ha⁻¹

Overall, as optimal plant P dose is 60 kg $P_2O_5ha^{-1}$ or lower, the use of novel fertilizing P materials may be considered safe, but attention should be given at the quantity given in time to avoid possible overdosing negative effects, especially in case of CCP and P salt SL

Pathogens

- No sample harboured detectable levels of the target pathogens (Table below)
- Only the P salt SL sample yielded growth—non-lactose fermenting colonies— on
- the MAC plate from the 25 g enrichment. This growth tested oxidase positive, ruling it out as *Shigella spp.*
- Positive growth of Gram variable rod-shaped bacteria was identified in both sample P salt SL and MA

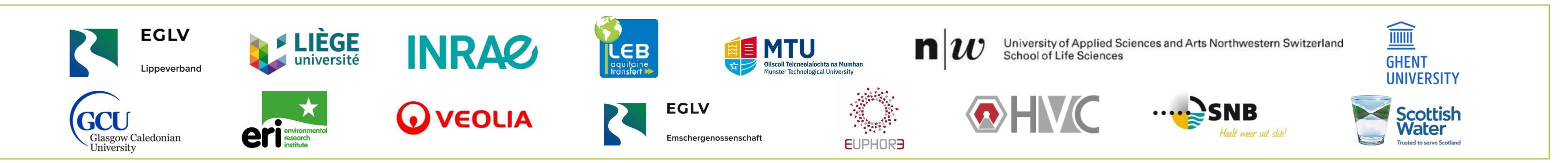
Fertilizing P materials	CFU in 1 g		Presence/Absence in 1 g		Presence/Absence in 25 g	Acrobic plate count	
	E. coli	Enterococcus spp.	E. coli	Enterococcus spp.	Salmonella spp.	Aerobic plate count	
ASH PI	<1	<1	Absent	Absent	Absent	0	
P salt SL	<1	<1	Absent	Absent	Absent	>300	
P salt CL	<1	<1	Absent	Absent	Absent	0	
MA	<1	<1	Absent	Absent	Absent	>300	
ССР	<1	<1	Absent	Absent	Absent	>300	

4. Conclusions

Bio phosphates

- For MA a comparable shoot dry matter as TSP was observed
- P salt CL showed the highest concentrations of P, but also other MA had significantly higher shoot P concentrations compared to TSP
 - MA contained higher concentrations of contaminants than TSP
 - CCP had lower dry matter compared to TSP but it increased shoot P concentration compared to Zero P
- P availability of ASH PI was higher than Zero P, but limited by high Presence of CaCO₃ in the CCP potentially lowered its decomposition rate
 - CCP was the purest product in terms of inorganic contaminants but several

= 0.923 (p < 0.001



Pathogens Terrestrial / aquatic -400 Salmonella/E-Plant omega -3 **Terrestrial/aquatic** coli/Enterococcaceae index tests

• Higher concentrations of inorganic contaminants and other trace elements organic pollutants were detected, as well as in MA compared to TSP were detected in ash-based materials, as this ash was not yet chemically post-treated

P salt CL had a fast P release same as TSP

contaminants compared to P salt SL and P salt BL

• P salt BL produced from liquid fraction of sludge was the purest

References:

EC (2019) REGULATION (EU) 2019/1009 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 5 June 2019 laying down rules on the making available on the market of EU fertilising products and amending Regulations (EC) No 1069/2009 and (EC) No 1069/2009 and repealing Regulation (EC) No 1007/2009 and repealing Regulations (EC) No 1069/2009 and (EC) No 1069/2009 and repealing Regulation (EC) No 2003/2003. Official Journal of the European Union, L170/1.

Bogdan, Aleksandra; Robles-Aguilar, Ana Alejandra; Szabolcs, Papp; Taggart, Mark; Coquery, Marina; Le Guédard, Marina; Roberts, Joanne; Hunter, Colin; O Donnell, Ciaran; Harrington, Joe; Ruijter, Josien; (2021): Quality assessment of recovered phosphorus materials carried out within the Phos4You project. Edited by Evi Michels, Erik Meers. UGhent. Ghent.

Acknowledgement: The Phos4You project receives ERDF-funding through the INTERREG VB North-West Europe Programme (2014 – 2020). Match funding is provided by all the partner organisations listed above.

September 21

Phos4You – recovered phosphorus from wastewater

