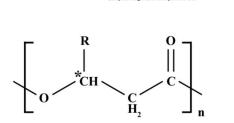


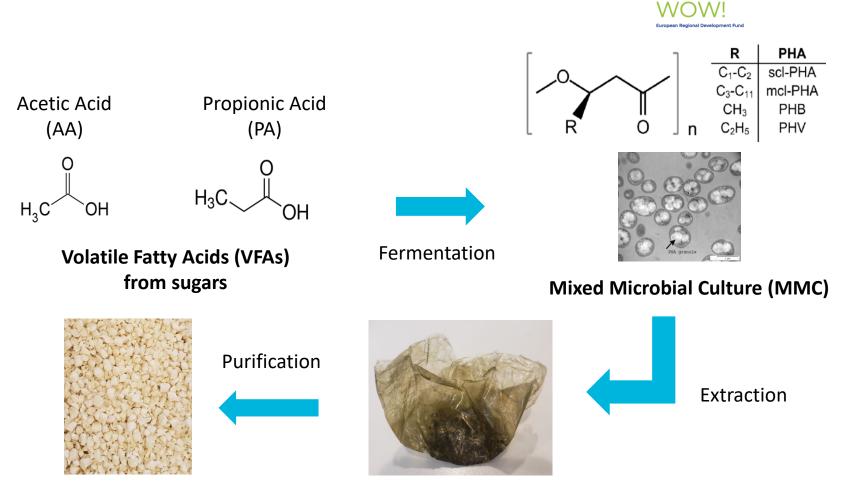
Residual Streams From Sewage Treatment Plants As A Source for PHA-Bioplastic End


Products

30 September 2021 Amélie Raingué– NaturePlast

PHA Bioplastics At A Glance

- PHA: Polyhydroxyalkanoate
- Polymer consists mainly of two monomers:
 - 3HB (3-hydroxybutyrate)
 - 3HV (3-hydroxyvalerate)
 => Copolymer: PHBV
- Composition determines properties

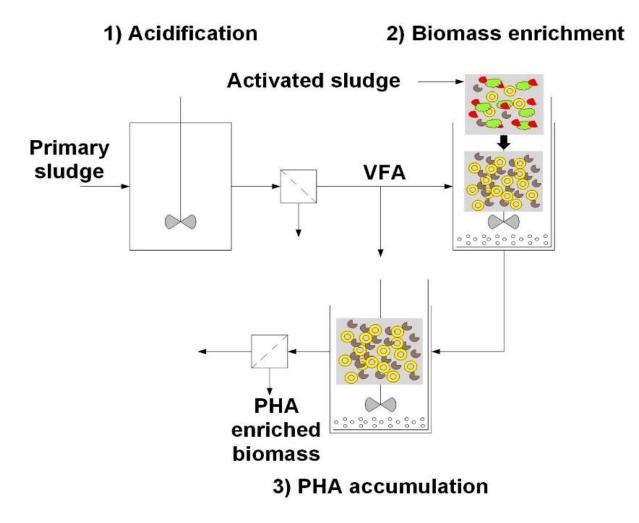

Poly(3-hydroxyalkanoate)

R group	Carbon no.	PHA polymer
methyl	C ₄	Poly(3-hydroxybutyrate)
ethyl	C ₅	Poly(3-hydroxyvalerate)

- Worldwide production capacity of 30 kT in 2019
- Biobased, biodegradable and biocompatible (non-toxic)
- Currently mainly produced from corn starch or sugars (sugar cane or sugar beet)

PHA Production Process

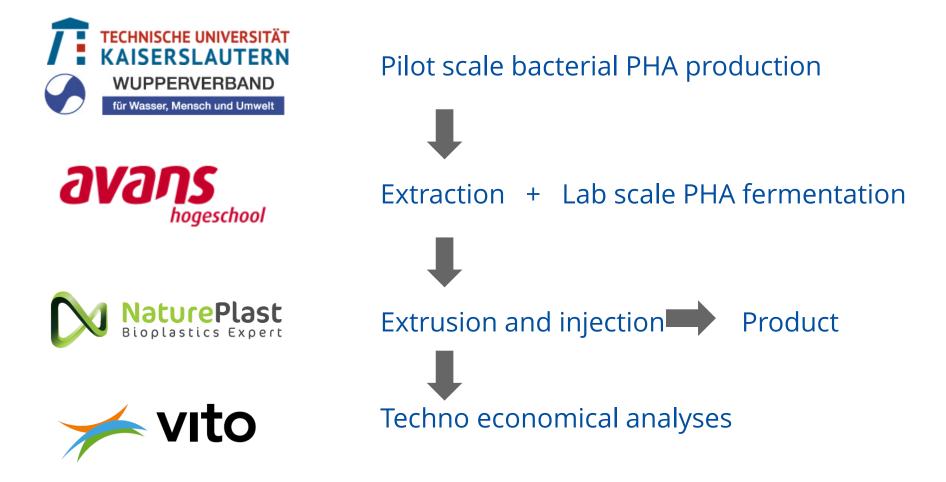
Extracted PHA



Interreg

North-West Europe

WOW! PHA Production Process



PHA Pilot Team

PHA extraction

PHA2USE Project PAQUES biomaterials

18 kg of PHA extracted

Pilot Scale Extrusion and Injection

PHA

21 mm Twin-screw Extruder

PHA Products

Injection Machine

WOW PHA vs commercial PHA

	PHA WOW!	Commercial PHA #1	Commercial PHA #2
Composition	PHBV (30% HV)	PHBV (2% HV)	РНВН
Young Modulus(MPA)	915	5 200	1 700
Flexural modulus (Mpa)	633	4 400	1 460
Tensile strength at break (MPA)	10	40	26
Tensile elongation at break (%)	39	2.7	6
Charpy impact strength (kJ/m²)	N.B	7	14
Vicat A50 (°C)	87	> 150	100

WOW PHA vs conventional polymers

	PHA WOW!	РР	HDPE	ΡΕΤ
Young Modulus(MPA)	915	1 200	1 000	2 600
Flexural modulus (Mpa)	633	1 300	1 350	2 300
Tensile strength at break (MPA)	10	30	/	60
Tensile elongation at break (%)	39	400	600	25
Charpy impact strength (kJ/m²)	N.B	N.B	N.B	120
Vicat A50 (°C)	87	150	120	75

PHA End-Products & Applications

Coffee Capsules

Water denitrification

Vineyards Clips

Cosmetic

Food packaging

Conclusions & Future Research

- PHA is the only polymer really biodegradable in water
- Soft PHA => not really available on the market today => WOW PHA could bring a solution
- Could be used in films/blowing applications
- Could be used as an softening agent with biodegradable polymers (PLA, PHBV)
- Further tests to to optimize process, formulation, etc ...

