

From toiletpaper to

Valuable resources

Pilot at sewage treatment plant Ede

Type installation	Activated sludge			
Design capacity	272.000	PE		
Actual load	261.041	PE		
		2		
Treated sewage water	14.056.903	m³/year		
Average feed	38.512	m³/day		
Dry weather feed (50 percentiel)	30.193	m³/day		
Maximum capacity	8.000	m³/hour		
COD	27.000	kg/day	695	mg/l
BOD	9.066	kg/day	233	mg/l
TKN	2.660	kg/day	58	mg/l
Ptot	362	kg/day	9	mg/l
TSS	11.238	kg/day	288	mg/l

System set-up

A quick tour

Controls

Working principle

In-line separation of cellulose and residue

Dewatering

- Mechanically dewatering the Cellulose screenings from the CirTec sieves
- Cake dewatered up to 45...50% DS
- Dewatered cake is stored in a buffer, to separate different sections of the installation
- Filtrate returned to the WWTP

Cake, 45%DS

Drying section

(1) Falling curtain dryer

(3) Pellet press

(4) Deep Dryer

Pyrolysis

Cracking of organic material at a high temperature and low oxygen content

Temperature gradient 200-900 °C

Flash reactor for very rapid pyrolysis

Advantage:

Degradation toxic components and pathogens; gasses as fuel

Disadvantage:

Ash contains heavy metals

Pyrolysis section

Pyrolysis Products

Feedstock of the

pyrolysis reactor

Pyrolysis

Char Used as activated carbon, For adsorption of micropollutants in effluent

Bio-oil Green fuel used Externally for steam generation

(Pyrolignious) Acid (pH ~5) Enhances denitrification and biological P-removal in WWTP

Pyrolysis gas Combusted in the installation, to supply heat for the dryers

Challenges on the products

Bio-oil

Technical:

- The ash content of the oil is relatively high (lead to dust formation on the heat exchanger reducing the heat transfer)
- Concentration of several species could be to high (for instance chlorine)

Activated carbon

Technical:

- Microstructure (500...2000 m2/gram)
- Activation options: thermal, chemical or biological
- The effect of pyrolyse temperatuur

Legal: Waste status

Fiscal: product status

Challenges on the proces

How circular and environmental positive is the process?

- WWTP, reducing sludge deposition, producing biochar, acid, bio-oil
- Replacing fossile activated carbon (removal pharmacueticals)
- Can the energy consumption of the proces be reduced?

