Masterclass – OPEX modelling of offshore energy

06th October 2021 - online

European Regional Development Fund

- Attendees' microphones will be muted during the event.
- After each presentation there will be time for a short Q&A. After the session there will be an additional Q&A.
- Questions can be formulated in the chat at any time, and they will be addressed during the Q&A session.
- The event will be recorded, and the slides will be shared on the OPIN website.

Speakers

Anna Garcia Teruel University of Edinburgh

Interreg UROPEAN UNION North-West Europe OPIN European Regional Development Fund

Anthony Gray Offshore Renewable Energy Catapult

Nis Ebsen Floating Power Plant A/S

Annicka Wann Exceedence Ltd.

Agenda

- **11:00 11:10 OPIN Introduction** *Simon Stark Dutch Marine Energy Centre*
- **11:10 11:35 Benefits of detailed O&M models to quantify investment KPIs** Anna Garcia-Teruel The University of Edinburgh
- **11:35 12:00** A developers perspective on O&M models for devices and projects *Nis Ebsen Floating Power Plant*
- **12:00 12:25** A combined floating wind and wave energy O&M model Anthony Gray Offshore Renewable Energy Catapult
- **12:25 12:45Relevance of OPEX estimates in project modelling and uncertainty analysis**
Annicka Wann Exceedence Ltd.
- 12:45 13:00 Final Q&A

What is OPIN ?

Ocean Power Innovation Network (OPIN) is a **European collaborative network**

OPIN Aim:

 Develop both cross-regional and cross-sectoral collaboration

OPIN Targets:

- Support over 100 companies
- Develop a self-sustaining network (>200 members)

2.6M€ total project budget1.5M€ in financial supportfrom Interreg North West Europe

Who are OPIN ?

7 partners from Ireland, UK, Belgium, France, the Netherlands and Germany

Project Partners	Countries/Regions
Sustainable Energy Authority of reland (SEAI)	Ireland
Scottish Enterprise (SE)	Scotland
Offshore Renewable Energy Catapult (OREC)	United Kingdom
Sirris, het collectief centrum van de technologische industrie (SIRRIS)	Belgium
Vest Atlantic Marine Energy Community, École Centrale de Nantes (WEAMEC)	France Pays de la Loire
Outch Marine Energy Centre (DMEC)	Netherlands
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. (Fraunhofer IEE)	Germany

What can OPIN do for you?

Receive travel support

 Enabling Irish and Scottish Enterprise SMEs to travel abroad for OPIN events

Access **<u>expert advice</u>** on your technology (TAPs)

- ✓ Independent expert opinion e.g. on the route to market, on reducing development risks and costs, etc.
- ✓ Advice on next steps, funding and collaboration opportunities

Support collaborative projects (CIGs)

- ✓ Preparatory step to National and EU research calls
- ✓ Find ways to solve technical or financial problems you are facing
- Expand your network nationally and internationally
- ✓ Benefit from the experience of those in other industries

OPIN Resources

OPIN Members list

OPIN Library:

- Workshops/masterclasses presentations
- Value chain study summary report
- Ocean energy challenges and recommendations: Desktop analysis of studies and reports

OPIN <u>Twitter</u> and <u>Linkedin</u> groups. Join us for the latest updates!

Email us at: <u>OPIN@seai.ie</u>

Innovative, low cost, low weight and safe floating wind technology optimized for deep water wind sites

Benefits of detailed O&M models to quantify investment KPIs

Anna Garcia-Teruel, PhD The University of Edinburgh Email: a.garcia-teruel@ed.ac.uk

OPIN Masterclass– October 06th 2021

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 815289

The Policy and Innovation Group

Services:

- Techno-economic and socio-economic assessment
- ➔ Life Cycle Evaluation
- → Array Optimization Analysis
- → Strategy Planning and roadmapping
- → Consultancy

"The group analyses the dynamics of innovation in energy systems, especially the relationships between policy, investment and innovation."

> Team Leader: Henry.Jeffrey@ed.ac.uk

<u>Main partners:</u>

DESOURCE

www.policyandinnovationedinburgh.org

Outline

- Introduction
- Motivation
- Approach: integrating O&M model in techno-economic assessment
- Results:
 - How do the results compare to using simple assumptions?
 - Are there any added benefits?
- Conclusions

Introduction – Life Cycle Cost Analysis

Source: [2] A. Garcia-Teruel and H. Jeffrey, "The economics of floating offshore wind – A comparison of different methods." figshare, 2020.

Introduction – What are common cost indicators?

- Investments cost or Capital Expenditures (CapEx)
- Levelised Cost of Energy (LCoE)

$$LCoE = \frac{PV(CapEx + OpEx + DecEx)}{PV(AEP)}$$

$$PV(x) = \sum_{t=0}^{n} \frac{x_t}{(1+r)^t}$$

r : Discount raten : Lifetimet : Year

• Net Present Value (NPV)

$$NPV(x) = \sum_{t=0}^{n} \frac{Cashflows_{t}}{(1+r)^{t}}$$

- Pay-Back-Period (PBP) or Discounted Pay-Back-Period (DPBP) Time required to recover the original investment
- Internal Rate of Return (IRR) Indicator for the profitability of a project

Interred

OPIN

North-West Europe

Introduction – The FLOTANT project

Innovative, low cost, low weight and safe floating wind technology optimized for deep water wind sites

Introduction – The FLOTANT project collaboration results

Applied Energy 301 (2021) 117420

Incorporating stochastic operation and maintenance models into the techno-economic analysis of floating offshore wind farms

```
Giovanni Rinaldi<sup>a,*</sup>, Anna Garcia-Teruel<sup>b,*</sup>, Henry Jeffrey<sup>b</sup>, Philipp R. Thies<sup>a</sup>, Lars Johanning<sup>a,c</sup>
```

^a Renewable Energy Group at the University of Exeter, Penryn Campus, Treliever Road, TR109FE Penryn, Cornwall, UK

^b School of Engineering, Institute for Energy Systems, The University of Edinburgh, Edinburgh EH9 3JG, UK

^e Harbin Engineering University, Yiman St, Nangang, Harbin, Heilongjiang, China

Source: [1]

Motivation

More specific KPIs that break down the different considerations and assumptions used within the calculation of the LCoE can support technology comparison

Especially relevant in logistics and assets management, where very little experience exists & oversimplified approximations are used in techno-economic assessment models.

Reduce the uncertainties in the estimation of the technical and economical parameters of the project & support in the decision-making process.

Approach – Integrating O&M model into cost model

Source: Adapted from [1]

Approach – Stochastic O&M model

Approach – Cost model

Approach – Case studies inspired by pilot parks

Source: [1]

Interreg |

OPIN

North-West Europe

Results – Overview of obtained KPIs

	Quantity / Parameter	Case Study 1	Case Study 2
	Average AEP [GWh]	131.9	168.7
	Average annual energy lost [GWh]	8.5	13.1
	Energy-based availability [%]	93.9	92.8
	Net capacity factor [%]	50.2	40.5
	Equivalent hours	4396	3551
	O&M costs undiscounted [m£ ₂₀₁₉]	111.1	101.1
	Normalised O&M cost per energy produced [£ ₂₀₁₉ /MWh]	33.7	24.0
	CoE [£ ₂₀₁₉ /MWh]	79.3	72.4
	LCoE [£ ₂₀₁₉ /MWh]	171.8	172.5
	NPV [m£ ₂₀₁₉]	-93.6	-120.1

0&M model

Cost model

Results – Common cost indicators

Source: [1]

Page 22

	Case S	tudy 1	Case Study 2		
	O&M modelApproximation(77.1% CapEx)(25% CapEx)		O&M model (51.3% CapEx)	Approximation (25% CapEx)	
OpEx [m£ ₂₀₁₉]	111.1	36.0	101.1	49.3	
Normalised O&M cost per energy produced [£ ₂₀₁₉ /MWh]	33.7	11.1	24.0	11.9	
CoE [£ ₂₀₁₉ /MWh]	79.3	56.6	72.4	60.1	
LCoE [£ ₂₀₁₉ /MWh]	171.8	149.1	172.5	160.2	
NPV [m£ ₂₀₁₉ /MW]	-93.6	-74.9	-120.1	-107.3	

LCOE underestimated by 7.4-14.2%

Source: Values from literature from [4]

nean Regional Development Euro

		Case study 1			Case study 2	
Normalised O&M cost per energy produced [£ ₂₀₁₉ /MWh]	O&M model (33.7)	9.2	28.5	O&M model (24.0)	9.2	28.5
OpEx [m£ ₂₀₁₉]	111.1	30.0	92.9	101.1	38.3	118.7
CoE [£ ₂₀₁₉ /MWh]	79.3	54.7	73.8	72.4	57.5	76.6
LCoE [£ ₂₀₁₉ /MWh]	171.8	147.2	166.3	172.5	157.6	176.6
NPV [m£ ₂₀₁₉ /MW]	-93.6	-73.5	-89.1	-120.1	-104.6	-124.5

nean Regional Development Euro

Results – Further insights provided by O&M model

Interreg

North-West Europe

OPIN European Regional Development Euro

Source: [1]

Results – Further insights provided by O&M model

Case study 1

Case study 2

Source: [1]

Interreg

North-West Europe

OPIN

Results – Further insights provided by O&M model

Conclusions

- Using more detailed O&M models allows us to:
 - Assess the variation in costs due to differences in resource, weather conditions, distance to shore, or vessel availability.
 - Assess the impact of applying different O&M strategies on the overall costs
 - Better understand the uncertainty around cost estimates
 - Better understand the sources of different costs and to identify key cost drivers such as critical operation and maintenance procedures and components whose reliability characteristics should be improved within the context of minimising the overall system costs.
- Using simplified representations of OpEx may lead to underestimation of the total costs with variations in LCoE estimates of up to 15% (for the studied cases).

[1] G. Rinaldi, A. Garcia-Teruel, H. Jeffrey, P. R. Thies, and L. Johanning, "Incorporating stochastic O&M models into the techno-economic analysis of floating offshore wind farms," *Appl. Energy*, 2021. doi: 10.1016/j.apenergy.2021.117420

[2] A. Garcia-Teruel and H. Jeffrey, "The economics of floating offshore wind – A comparison of different methods." figshare, 2020. doi: 10.6084/m9.figshare.12656300

[3] A. Garcia-Teruel and H. Jeffrey, "The economics of floating offshore wind – A comparison of different methods", *In Proc. of RENEW conference*, 2020.

[4] Eik A. Statoil's contribution to the North East future economy. Aberdeen: 2017.

[5] Gonzalez-Rodriguez AG. Review of offshore wind farm cost components. *Energy Sustain Dev* 2017;37:10–9. https://doi.org/10.1016/j.esd.2016.12.001.

Questions & getting in touch

a.garcia-teruel@ed.ac.uk

in linkedin.com/in/anna-garcia-teruel

Policy and Innovation Group

policyandinnovationedinburgh.org

in <u>linkedin.com/company/policy-and-innovation-group</u>

FLOTANT project

lin

flotantproject.eu

linkedin.com/company/flotant-project

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 815289

FLOATING POWER PLANT

A developer's perspective on O&M modelling

October 2021

Table of contents

- 1 Company and Technology
- 2 Markets
- 3 O&M modelling

FLOATING POWER PLANT A/S (FPP)

Offices:

- Denmark
- UK (subsidiary in Edinburgh)
- Spain (subsidiary in Las Palmas)

Ownership structure

- +240 shareholders
- Largest consolidated shareholders own ~12%.
- FPP is pre revenue company
- Non-listed

WE DEVELOP IN PARTNERSHIPS (IN THE PUBLIC DOMAIN)

SIEMENS

Global leader in power generation

Global leader in offshore service (70 projects in 50 countries)

Technology VC developer for the oil and gas market

Global leader in hydraulic pitch control systems (e.g. Siemens Wind)

Global leader in Offshore hydrogen and O&G EPC

Integrate knowledge and experiences
Prepare value chain for ramp up
Reduce capital expenditure

Global Leaders in turrets

WHAT TECHNOLOGY ARE WE DEVELOPING

FLOATING POWER PLANT

THE FPP PLATFORM

Table of contents

- 1 Company and Technology
- 2 Markets
- 3 O&M modelling

FPP positioned as a leader in deep water and high wind areas

The technology has unique and proven attributes in deep water segments, the next frontier of offshore wind

One technology – a multitude of green applications

Floating Power Plant enables the energy transition through a multiple market approach

PIPELINE GROWING FAST

Floating wind market

- Plocan commercial demonstration
- 3 SPVs with an Irish Client (50% ownership)
 - England, Scotland and Ireland
- 100 MW small Array in Wales
 - UK client (competitive bid)
- Demonstration project application in Japan
 - Tier 1 partners
- Multiple client engagement in Scotwind leasing round
- Etc.

Power-2-x (Island and electrification)

- 150 300 MW array in Canaries
- 6 operators in UK for Electrification
 - Concept select for first field
- 3 Operators in Brazil
- Norway
 - One bids with FPP technology + Hydrogen for a charter agreement setup
 - One longer term client
- More coming and fast

Table of contents

- **1** Company and Technology
- 2 Markets
- 3 O&M modelling

FOCUS OF THIS O&M MODELLING TALK IS THE FLOATING WIND MARKET

- +100 MW projects
- 25 years operational lifetime
- Deep, energetic sites (green and blue areas)
- Projects competing on LCoE
- Under warranty (Repairs and power curve / production warranty)

• High uptime

- Low maintenance requirement (one scheduled visit pr year)
- Safety during offshore operations
- Low cost O&M cost have a significant impact on LCoE

FLOATING POWER PLANT 🎾

O&M SIMULATION TOOL CONCEPT

FPP O&M TRAITS

- The "harbour" effect of the FPP platform gives significantly more "access hours" due to wave height reduction
- Boat landing behind platform for safe access
- All systems indoor, comfortable and safe working conditions
- Space for handling and storing spares / possibility for emergency shelter
- FPP have used different modelling approaches to quantify these benefits
- No existing tools available that captured all of these traits out of the box, when we started

FLOATING POWER PLANT 🎾

USE OF O&M MODELLING IN ALL STAGES OF DEVELOPMENT

TECHNOLOGY DEVELOPMENT

• Basic need to estimate O&M conditions and costs:

- Guide development by identifying and quantifying O&M cost drivers
- Generic assumptions for site conditions
- Educated guesses on O&M consequences of design choices
- Simplified model can be used

PROJECT DEVELOPMENT

- Basic need to assess specific projects / sites to determine
 - Feasibility
 - Downtime
 - Vessel and crew sizes
 - Installation / tow time and weather windows
 - Cost of energy
- Different levels of detail at different stages of project development
 - Site screenings generic assumptions, simple model
 - Paid site study or FEED site relevant data and assumptions, full analysis
 - Commercial project detailed site-specific data and cost drivers, full analysis

PROJECT EXECUTION

• Basic need to anticipate and plan operations and tasks

- Vessel and crew sizes
- Installation / tow time and weather windows

• Different levels of detail at different maturity stages

- Prototype project (P37 platform) simple planning of activities, low experience
- Demonstration project better model, better data and assumptions, ad hoc setup
- Commercial project detailed season and day to day planning, full O&M organization

WHAT IS EASIER AND WHAT IS STILL HARD COMPARED TO WHEN WE STARTED

Easier

- Access to excellent tools. Commercial and free.
 - i.e. OREC O&M tool
- Access to detailed weather data and time series. Commercial and free.
 i.e. <u>DHI metocean data portal</u> and <u>Copernicus ERA5</u>

Still hard

- Hard to estimate fault frequency and repair time
- Hard to get access to experience data from wind industry

FLOATING POWER PLANT

END

Overview of ORE Catapult's Publicly Available O&M Simulation Tool

OPIN Masterclass: OPEX Modelling For Marine Renewable Energy Technologies And Projects

06/10/2021 Dr Anthony Gray

Interreg UNDERNO North-West Europe OPIN European Regional Development Fund

Agenda

- ORE Catapult
- Model Background
- Access and References
- High-level model overview
- The interface
- How to add a fault category?
- How to add a scheduled maintenance category?
- How to access the source code?
- How to model a floating wind farm?
- Limitations
- Contact details

The Offshore Renewable Energy Catapult

The UK's leading technology innovation and research centre for offshore renewable energy

Mission: to accelerate the creation & growth of UK companies in the offshore renewable energy sector.

- Unique facilities, research & engineering capabilities
- Bringing together innovators, industry and academia
- Accelerating creation and growth of UK companies
- Reducing cost and risk in renewable technologies
- Growing UK economic value
- Enabling the transition to a low carbon economy

- ORE Catapult has developed a unique Operations & Maintenance (O&M) simulation tool for calculating the
 operational feasibility and profitability of hybrid floating wind-wave sites, boosting the potential investability of these
 projects.
- The simulation tool was developed by ORE Catapult using open-source code from Wave Energy Scotland (WES) under a pilot project for the Ocean Energy Scale-Up Alliance (OESA). The first simulation has been for a hybrid floating wind-wave platform being developed by Floating Power Plant (FPP). The Katanes site, located off the north coast of Scotland, has a potential capacity of 300MW.
- There's no reason someone can't adapt the O&M tool for their own uses e.g. a floating wind farm

Original model available from

wave energy SCOTLAND

European Regional Development Fund

EUROPEAN UNION

Modified model funded by

• A case study report focussing on the FPP Katanes site, which was published in conjunction with the WindEurope Offshore 2019 conference, can be accessed with the following link. This gives the reader some idea of how the O&M simulation tool can be used.

https://ore.catapult.org.uk/?orecatapultreports=operations-and-maintenance-modelling-of-floating-hybrid-systems.

• The user guide can be accessed from the ORE Catapult website with the following link. This page also contains a request form for the model itself.

https://ore.catapult.org.uk/stories/hybrid-floating-om-simulation-tool/.

- Access to the model can also be achieved by emailing <u>magnus.willett@ore.catapult.org.uk</u>.
- The original wave energy focussed O&M tool can be accessed from the Wave Energy Scotland website (free registration required) with the following link.

https://library.waveenergyscotland.co.uk/other-activities/design-tools-and-information/tools/om-simulation-tool/

• Useful reference for a high-level overview of O&M simulation models: <u>https://ore.catapult.org.uk/analysisinsight/what-are-operations-and-maintenance-simulation-tools/</u>.

High-level model overview

- A time-domain model based in an Excel workbook the programming is VBA*
- 'Steps' through hourly hindcast weather data
- Simulates the occurrence of faults that need to be repaired (corrective maintenance) Monte Carlo analysis
- Devices can be due for scheduled maintenance
- Takes the 'state' of the device at any one time to assess marine logistics
 - Is the vessel available?
 - Are the people available?
 - Is the weather suitable?

*VBA = Visual Basic for Applications

Source: Model user guide

			-	~~~			
Universal Inputs							
Number of platforms	30			1			
Number of fault categories	13	Fast Run					
Number of scheduled maintenance tasks	3						
Array lifetime	25		Full Run				
Install ops limits type	2			1			
Installation vessel	AHTS with Tug		Stat Run				
Install time (hours)	3						
Connect/disconnect technicians required	5						
No. platforms allowed at base	30						
No. platforms allowed at base for	20						
maintenance	50						
Night operations?	Yes						
Array location	North						
	Scotland						
Use current weather?	Yes						
(KAT-025-001)							
Choose specific dataset?	No						
Currency	€						
Output format	m						

- 'Universal inputs' essentially where you define your farm (yellow means user inputs needed)
 - Number of platforms (or devices)
 - Array lifetime (in years)
 - Installation details (operational weather limits are defined by the user in the 'Ops Limits' tab
 - O&M base restrictions (i.e. number of portside berths)
 - Weather dataset to use
 - Currency and outputs units for monetary values
- The other input tabs are explained in detail in the documentation

How to add a fault category?

A	В	С	D	E	F	G	н	1	J.	к	L	M	N	0	Р	Q	R	S	Т	U
1		Example	Consequences	Knock on effect	Effect on power capture	Power loss	Remote Indication	External visual indication	Relevance	Basis of probability	Prob of fail (/year)	Prob not fail (/year)	Action required	Vessel required	Time required offshore (hours)	Ops limits type	Time required onshore (days)	cost	costs	Technicians required
2 1	1 Major fault - Platform	TBC	Harbour repair	TBC	Full shutdown	0.0333	TBC	TBC	Platform	0.050	0.0488	0.9512	Retrieve platform	AHTS with Tug	3	1	5	250000	0	5
3 2	2 Large fault - Platform	TBC	Offshore repair	TBC	Full shutdown	0.0333	TBC	TBC	Platform	0.150	0.1393	0.8607	Onsite repair	CTV	20	3	0	30000	0	2
4 3	3 Large fault - WTG	TBC	Offshore repair	TBC	Full WTG shutdown	0.0333	TBC	TBC	WTG	0.350	0.2953	0.7047	Onsite repair	CTV	20	3	0	30000	0	2
5 4	4 Large fault - WEC	TBC	Offshore repair	TBC	Full WEC shutdown	0.0333	TBC	TBC	WEC	0.700	0.5034	0.4966	Onsite repair	CTV	20	3	0	30000	0	2
6 5	5 Medium fault - Platform	TBC	Replace module	TBC	Full shutdown	0.0333	TBC	TBC	Platform	0.500	0.3935	0.6065	Onsite repair	CTV	5	3	0	12500	0	2
7 6	6 Medium fault - WTG	TBC	Replace module	TBC	Full WTG shutdown	0.0333	TBC	TBC	WTG	1.000	0.6321	0.3679	Onsite repair	CTV	5	3	0	12500	0	2
8 7	7 Medium fault - WEC	TBC	Replace module	TBC	Full WEC shutdown	0.0333	TBC	TBC	WEC	2.000	0.8647	0.1353	Onsite repair	CTV	5	3	0	12500	0	2
9 8	8 Minor fault - Platform	TBC	Minor repair	TBC	Full shutdown	0.0333	TBC	TBC	Platform	0.550	0.4231	0.5769	Onsite repair	CTV	1	3	0	2000	0	2
10 9	9 Minor fault - WTG	TBC	Minor repair	TBC	Full WTG shutdown	0.0333	TBC	TBC	WTG	1.100	0.6671	0.3329	Onsite repair	CTV	1	3	0	2000	0	2
11 #	Minor fault - WEC	TBC	Minor repair	TBC	Full WEC shutdown	0.0333	TBC	TBC	WEC	2.250	0.8946	0.1054	Onsite repair	СТУ	1	3	0	2000	0	2
12 #	Remote reset - Platform	TBC	Downtime	TBC	Full shutdown	0.0333	TBC	TBC	Platform	1.500	0.7769	0.2231	Remote reset		1	0	0	0	500	0
13 #	Remote reset - WTG	TBC	Downtime	TBC	Full WTG shutdown	0.0333	TBC	TBC	WTG	3.000	0.9502	0.0498	Remote reset		1	0	0	0	500	0
14 #	Remote reset - WEC	TBC	Downtime	TBC	Full WEC shutdown	0.0333	TBC	TBC	WEC	6.000	0.9975	0.0025	Remote reset		1	0	0	0	500	0

- The fault categories table is the main table in the 'Inputs' tab
- Each row represents one fault category, the user needs to specify failure rate and any repair parameters
- To add a fault category, make sure you only move this table down (i.e. select the cells of one row in the table and insert a new row) – DO NOT INSERT AN ENTIRE NEW ROW (this will move the universal inputs table as well as make it unreadable)
 - VBA is very much dependent on cell referencing! So be careful!
- The numbers of the fault categories are their IDs, so make sure they go from 1 to X.
- The ID colours are also important too as they determine priority of repair!
- The repair parameters are 'per instance' you could use a Failure Modes and Effects Analysis (FMEA) to help you define these fault categories

		Relevance	Tasks	Carry out every (years)	Staggered?	Time of year	Action required	Vessel required	Time required offshore (hours)	Ops limits type	Time required onshore (days)	Parts cost (€)	Other costs (€)	Inspection costs (€)	Technicians required
1 R	Routine service	Platform	Inspect all	1	N/A	Summer	Onsite maintenance	CTV	48	3	0	10000	0	0	2
2 1	ntermediate survey	Platform	Inspect all	4	N/A	Summer	Onsite maintenance	CTV	8	3	0	0	0	30000	2
3 N	lajor components refit	Platform	Major refit	7	No	Winter	Retrieve platform	AHTS with Tug	3	1	30	600000	0	20000	8

- The scheduled maintenance categories are also in the 'Inputs' tab, below the fault categories
- You need to specify the frequency in years
- You can define if you want the maintenance to be staggered between devices. For example, you might have a major maintenance campaign scheduled every five years but you don't want ALL your devices to undergo this in year 5, 10, 15 etc. as this may not be cost-effective. You can stagger the maintenance so some of the devices undergo the work in year 4, 9, 14 etc. for example. The code that controls this process is in the 'array object' in the VBA window (see next slide)
- Maintenance can be specified as onsite (i.e. offshore) or offsite (i.e. at the O&M base) this is also true for the fault categories
- As with the fault categories, remember to add a row in the table, not an entire new row

- Alt + F11 to open the developer window, or add the Developer tab and click Visual Basic
- The code is object-oriented. The WES documentation is extensive and include flow charts of how the modules interact
- Some of the functions were modified for this OESA project so they might not be exactly as stated in the WES documentation – changes are noted in the updated user guide by ORE Catapult
- Remember cell notation in VBA is (row ID, column ID), not (column letter, row ID) like in Excel
 - So cell B5 would be noted as Cells(5, 2) in VBA

A note on the Weather tab:

How to model a floating wind farm?

- The tool is set up for a floating hybrid wave-wind energy device
- The 'Power' tab needs to contain the power curve for your turbine
 - Cell position is important, so check the code where needed
 - Set all the wave energy power matrix and tariff details (columns A to N) to zero
- Define your fault categories and scheduled maintenance categories in the Inputs tab, with Relevance set to either Platform or WTG
 - Anything but WEC is fine
- This should do the trick! You can tidy the inputs up but you'd need to get familiar with the VBA

ĸ	2		U	V	VV	X	Y	۷	AA		
Assumed WTG tariff	=	0.12	€/kWh								
Contract WTG length	n =	15	years								
WTG tariff after con	tract =	0.075	€/kWh								
			Win	d Turbin	e Genera	ator					
Rating of WTG = 8		MW	m/s to kts =		1.9438	Capacity factor adjustment =			95.0%		
	Vestas										
Wind Speed (m/s)	V164-8MV	v	U (kts)	U (m/s)	x1	y1	x2	y2	Power output (kW)		
0	0		2.5	1.29	1	0	2	0	0.00		
1	0		7.5	3.86	3	0	4	105	85.63		
2	0		12.5	6.43	6	1100	7	1850	1351.88		
3	0		17.5	9.00	9	4000	10	5500	3804.25		
4	105		22.5	11.58	11	7000	12	7850	7114.53		
5	500		27.5	14.15	14	8000	15	8000	7600.00		
6	1100		32.5	16.72	16	8000	17	8000	7600.00		
7	1850		37.5	19.29	19	8000	20	8000	7600.00		
8	2850		42.5	21.86	21	8000	22	8000	7600.00		
9	4000		47.5	24.44	24	8000	25	8000	7600.00		
10	5500		52.5	27.01	27	8000	28	8000	7600.00		
11	7000		57.5	29.58	29	0	30	0	0.00		
12	7850										
13	8000										
14	8000										
15	8000										
16	8000										

Limitations

- VBA is very clunky! I now prefer Python and would have made the original WES model in Python if I had known it back then
- Be careful with moving the inputs around, as lots of the code reads from specific cells
- Hourly resolution could be increased, but this adds to run speed
- Run speed is quite slow as it is a time-domain tool
- Can't use Excel when the program is running (very annoying!)
- Remember, the model is publicly available, fully open-source and comes with extensive documentation so if you want to use the code as a guide for making your own O&M simulation tool in a more familiar programming language, then you are free to do so!
- Any bespoke functionality you want, or any limitations the model has, can be added/solved!
 - You just need someone in your team who knows VBA or can program
 - You could even adapt the tool to model bottom-fixed wind farms if you got familiar enough with the model and read the documentation

- OESA O&M model developer at ORE Catapult: <u>anthony.gray@ore.catapult.org.uk</u>.
- OESA O&M model project manager at ORE Catapult: <u>magnus.willett@ore.catapult.org.uk</u>.
- Get in touch to access the model. We hope you find it useful for your analysis!

Contact us

Email us: info@ore.catapult.org.uk Visit us: ore.catapult.org.uk

Engage with us:

GLASGOW BLYTH LEVENMOUTH GRIMSBY ABERDEEN CORNWALL LOWESTOFT PEMBROKESHIRE CHINA

Relevance of OPEX estimates in project modelling and uncertainty analysis

Interreg

Annicka WÄNN Head of Projects

annicka.wann@exceedence.com

THE **Product**

ExceedenceFINANCE

A Financial Digital Twin for clean energy : From bidding to building to operating

A standardised, cloud-based, decision support tool for renewable energy projects.

Streamlined model build time, allowing users to focus on analytics and adding value.

 Transparent and shareable across
 teams. Reduced burden for audit and version control.

Identify and Reduce Risk: Optimise projects against technical and financial KPIs.

HOW WE ADD VALUE **Technology Innovation** 4 Year Duration €6m Budget North-West Europe Software and consultancy to up to 40 SMEs **Marine Energy** • Marine and Offshore TRL3-5 Alliance PROJECT PARTNER THE NETHERLANDS NAVINGO CONDICIONAL DAth Marine MARIN IRELAND MaRE EXCEEDENCE UNITED KINGDOM EMEC THE UNIVERSITY CENTRALE NANTES **INNOSEA**

Net Present Value (€)

€2,962,549.37

Net Present Value per MW (€)

€74,063.73

Simple Payback Period (Years)

9.00

Equivalent Annual Charge

€347,979.93

Discounted Payback Period (Years)

20.00

Capacity Factor

47.54 %

Internal Rate of Return

10.26%

Levelised Cost of Electricity (€/MWH)

€147.91

Cash Flow

금 같 Analytic

Results

Project

Resource

Device

Energy

Capex

Opex

Financials

÷

ப

0

ΰ**α**

My Account New Project Existing Projects Manage Devices Manage Locations Sign Out

LCOE and its influences

LCOE Formula

$$LCOE = \frac{CAPEX + \sum_{t=1}^{n} \frac{OPEX_t}{(1+r)^t}}{\sum_{t=1}^{n} \frac{AEP_t}{(1+r)^t}}$$

Where:

LCOE = levelised cost of energy

- CAPEX = capital expenditures
- $OPEX_t = operational expenditures$
- $AEP_t =$ annual electricity production
- r = discount rate, and
- n = economic life of the system

SOLUTION

We have taken a complex techno-financial process & productised it on a Cloud platform

Example Project Data inputs

Lifetime	20 years
Farm size	40MW
Turbine size	5MW
CAPEX	4,180,000 €/MW
OPEX	125,000 €/MW
Discount Rate	10%
Revenue	150 €/MWh

Costings sourced: BVGassociates, 2019. *Ocean Power Innovation Network value chain study: Summary Report*, a report for Scottish Enterprise.
S Exceedence Finance × +			0	-
← → C			$\stackrel{\wedge}{\simeq}$	•
🗰 Apps 附 Gmail 💶 YouTube 💡 Maps 🌀 How to Pass PMP E 📙 Offshore Gen 📙 Exceeden	ice 📙 Private			∷≣
XEXCEEDENCE	Crea	ate a Project		
Project	Project Name	OPIN OPEX MasterClass		
Resource	Farm Technology	Floating Offshore Wind ~		
Device	Currency	Euro		
U Energy	Preferred Farm Size (MW)	40		
Capex	Operating Years	20		
	Development Years	1		
i i i i i i i i i i i i i i i i i i i	Decommissioning Years	0		
بالله Financials	Comments	Please enter a comment		
Results				
크는 Analytics		Cancel		
	Pelp			
ly Account				

New Project Existing Projects Manage Devices Manage Locations Sign Out

FloatingOffshoreWind Data

Location Name	Year	Measured Height (m)	Apply
WaveHub	2012	10	Арріу
WaveHub	2017	70	Apply

https://exfinga.azurewebsites.net/Project/ResourceModule?selectedId=216&source=SUBMIT_RESOURCE_DATA&projectid=473

My Account New Project Existing Projects Manage Devices

S Exceedence Finance × +	0	-	ť
$\leftarrow \rightarrow C$ \triangleq exfinqa.azurewebsites.net/Project/DeviceModule?deviceId=0&source=FIRST_CALL&projectId=473		(;	*
👖 Apps M Gmail 🖸 YouTube 💡 Maps 🌀 How to Pass PMP E 📙 Offshore Gen 📙 Exceedence 📙 Private			II F

Available Devices

Project

- + Resource
- Device
- () Energy
- Сарех
- Öpex Opex
- **ル** Financials
- Results
- 그는 Analytics

My Account New Project Existing Projects Manage Devices Manage Locations Sign Out

				Choose a column:	Device Name	✓ S	earch
Device Name 🖨	Technology 🕈	Classification 🕈	Manufacturer 🖨	Max Power Rating 🕈	Depth/Height 🗘	View Device	Select Device
G128 5.0MW.	Fixed Offshore Wind	Horizontal Axis (HAWT)	Gamesa	5000 kW	95m	۲	
SWT-2.3-93.	Fixed Offshore Wind	Horizontal Axis (HAWT)	Siemens	2300 kW	10m	۲	
XD115.	Fixed Offshore Wind	Horizontal Axis (HAWT)	DARWIND	5000 kW	90m	۲	
Test.	Floating Offshore Wind	HAWT	Test	3000 kW	90m	۲	
? Help i Info							Apply

Project: OPIN OPEX MasterClass

S Exceedence Finance × +				0 -	-
\leftarrow \rightarrow C \bullet exfinqa.azurewebsites.net/Project/R	EnergyModule?projectid=473			*	k (
🗰 Apps M Gmail 💶 YouTube 💡 Maps 🕝 How	v to Pass PMP E 📙 Offshore Gen 📙 Exceedence 📙 Private				:=
XEXCEEDENCE	Height/Depth Recalculation			•	
	Device	Hub Depth/Height	Measured Depth/Height		
Project					

95

Please Select One:

Gamesa G128 5.0MW

No Recalculation	Weibull Distribution	Power Law	Power Law Exponent	Log Law	Surface Roughness Length
0	۲	0	0	0	0

70

Farm Factors

Curtailment Loss Factors	Constraint Loss Factors	Transmission Loss Factors	Grid Connection Limit
0 %	0 %	0 %	40 MW
	*0% loss i	mplies no losses	
PHelp Info			Calculate
Detailed Results			
Farm Results			
To also allo and	D.C. strange	Davies News	Course sites Forestern

+ Resource

Device

🕛 Energy

My Account New Project Existing Projects Manage Devices Manage Locations Sign Out

S E	xceedence Finance	+							0	—
\leftarrow	→ C 🌲 exfinqa.azurew	ebsites.net/Project	/EnergyModule						\$	e 1
Ap	ops 附 Gmail 🖪 YouTube	💡 Maps 🌀 Ho	w to Pass PMP E 🤤 Offshore Gen 📃 Exceed	ence 🧧 Private						∷
	EXCEEDENCE		Farm Factors							
			Curtailment Loss Factors	Cons	traint Loss Factors	Transmission Lo	oss Factors	Grid Connection Limit		
	Project		0 %		0 %	0	%	40 MW		
•	Resource				*0% loss in	nplies no losses				
								Calc	rulato	
	Device								ulate	
	Energy		Detailed Decults							
			Detalled Results							
			Farm Results							
° 0			Technology	Manufacturer		Device Name	Сар	pacity Factor		
			Fixed Offshore Wind	Gamesa		G128 5.0MW	47	′.54 %		
			Gross Annual Energy P	roduction	Net Appual Fi	perav Capture		alivered Energy (MW	(h)	
			(MWh)	roduction	(M)	Wh)	Annuar De		11)	
					1.0.0	F01		166,581		
			166,581		166	,50 I				

My Account New Project Existing Projects Manage Devices

Manage Locations

۲	Exceedence Finance X	+					o –
\leftarrow	→ C	tes.net/Project/Ca	pexModule?projectId=473				* 🖪 🛪
A	apps 附 Gmail 🖸 YouTube 💡	Maps G How to	Pass PMP E Coffshore Gen	📙 Exceedence 📙 Private			Ĩ
X	EXCEEDENCE		CAPEX Inputs			Project: OF	PIN OPEX MasterClass
	Project		Tota	al CAPEX	Simple Breakdown CAPEX	Detailed CAPE	(
÷	Resource		Description	Metric	Currency	Cost	
	Device		Total Capex	Cost per MW	► Euro	✓ 4180000	
ብ	Energy		Capex Sper	nd Profile			•
	Сарех						Apply
Ŷ	Орех						
	Financials		Help info Note: Only	/ complete one tab			
	Results						
	Analytics						
My Acco New Pro	punt						

Existing Projects Manage Devices Manage Locations Sign Out

S Exceedence Finance × +				0	_	
\leftarrow \rightarrow C $($ exfinqa.azurewebsites.net/Project/	/OpexModule?projectId=473			\$	œ	*
🛄 Apps 🎽 Gmail 🖸 YouTube 💡 Maps 🌀 Hou	w to Pass PMP E 🧧 Offshore Gen 🧧 Exceedence 🧧 Priva	ite				Ξ
EXCEEDENCE	OPEX Selection			Project: OPIN OPEX MasterClas	s	
Project	Total OPEX per Farm	Total Yearly OPEX per Farm	Break	down Total OPEX per Farm)	
+ Resource	OPEX Metric: €/M	1W ~	Annual OPEX:	125000		
Device						
() Energy				Apply		
Capex						
Opex						
帅 Financials						
Results						
그는 Analytics						

My Account New Project Existing Projects Manage Devices Manage Locations Sign Out

S Exceedence Finance X -	+	0	_	Ē
\leftarrow \rightarrow C \bullet exfinqa.azurewebsite	es.net/Project/FinancialModule?projectId=473	☆	œ :	*
🏥 Apps 附 Gmail 💽 YouTube 💡 N	Maps 🜀 How to Pass PMP E 📙 Offshore Gen 📙 Exceedence 📙 Private		E	R
EXCEEDENCE	Revenue - Basic Inputs	isterClass		
Project	Revenue / Feed In Tariff: ● Fixed ○ Variable €/MWh 15d			
+ Resource				
Device	Revenue - Extra Inputs	>		
() Energy				
Capex	Input Per Annum	>		
Copex	Discounting and Inflation Options	>		
Financials				
Results	Indexation and Escalation Factors	>		
그는 Analytics	Debt / Equity			
	DOD(7 Equity			
My Account New Project	Taxation	>		
Existing Projects Manage Devices				

Manage Locations Sign Out

Net Present Value (€)

€2,962,549.37

Net Present Value per MW (€) €74,063.73

Simple Payback Period (Years)

9.00

Equivalent Annual Charge €347,979.93

Discounted Payback Period (Years)

20.00

Capacity Factor

47.54 %

Internal Rate of Return

10.26%

Levelised Cost of Electricity (€/MWH)

€147.91

Cash Flow

Results

+

Ċ

0

°**b**

Project

Resource

Device

Energy

Capex

Орех

Financials

My Account New Project Existing Projects Manage Devices Manage Locations Sian Out

My Account New Project Existing Projects Manage Devices Manage Locations

Calculate

New Project Existing Projects Manage Devices Manage Locations

Sign Out

+/- %

0.00

0.00

/	
	Project
÷	Resource

Device

() Energy

Capex

Öpex

炒 Financials

Results

그는 그는 Analytics

My Account New Project Existing Projects Manage Devices Manage Locations

Fine Tuning					
Project: OPIN OPEX MasterClass					
Parameter	Project Value				
Energy					
Curtailment Loss Factor	0.00 %				
Constraint Loss Factor	0.00 %				
Transmission Loss Factor	0.00 %				
Annual Delivered Energy	166,581.53 MWh				
Device:G128 5.0MW					
No. of Units	8.00				
Array Loss Factor	0.00 %				
Availability Factor	100.00 %				
Capacity Factor	47.54 %				
Сарех					
Орех					
Opex Yearly Average	5,000,000.00 (€)				
Finance					

Reset

I	New Value	
	0.00	
	0.00	
	0.00	
	166581.53	
	8.00	
	0.00	
	100.00	
	47.54	
	4000000.00	

+	Parameter	Project Value	New Value	Delta
-	LCOE €/MWh	147.91	141.91	-4.06 % 🔻
	IRR %	10.26	10.99	7.16 % 📥
+	NPV €	2,962,549.37	11,476,113.10	287.37 % 🔺
	NPV/MW €	74,063.73	286,902.83	287.37 % 🔺
	LCOEIncTax €	147.91	141.91	-4.06 % 🔻

Calculate

-20

Fine Tuning

Project

Project: OPIN OPEX MasterClass

	Parameter	Project Value	New Value	+/- %	LCOE		IRR %	
+ Resource	Energy				- 150 Original 147.91	New	15 Original New	1
	Curtailment Loss Factor	0.00 %	0.00		100 -		10 10.259	12.191
Device	Constraint Loss Factor	0.00 %	0.00		50 -		5 -	
🕛 Energy	Transmission Loss Factor	0.00 %	0.00		0	LCOE	0	
	Annual Delivered Energy	166,581.53 MWh	166581.53	0.00				
Capex Capex	Device:G128 5.0MW				30,000,000	New	750,000	1
to Opex	No. of Units	8.00	8.00	0.00	20.000.000	25,658,137.627	500.000	11,453.441
	Array Loss Factor	0.00 %	0.00		10,000,000		250,000	
🝌 Financials	Availability Factor	100.00 %	100.00		2,962,549.37		74,063.73	
Results	Capacity Factor	47.54 %	47.54		0	NPV	NPV/MW	
	Сарех				+ Parameter	Project Value	New Value	Delta
⊐⊢ ∃∟ Analytics	Орех				LCOE €/MWh	147.91	141.91	-4.06 % 💌
	Opex Yearly Average	5,000,000.00 (€)	400000.00	-20	IRR %	10.26	12.19	18.84 % 📥
	Finance				NPV €	2,962,549.37	25,658,137.63	766.08 % 📥
	Revenue				NPV/MW €	74,063.73	641,453.44	766.08 % 📥
	Revenue FIT Rate	150.00 (€)/MWh	160	6.67	LCOEIncTax €	147.91	141.91	-4 06 % 💌
Account w Project	Fixed Revenue	150.00 (€)/MWh	150.00	0.00				
sting Projects nage Devices	Discounting							
nage Locations n Out	Real Discount Rate	10.00 %	10.00					

	Project
Ð	Resource
	Device
ሳ	Energy
0	Сарех

Öpex Opex **妙** Financials

Results

그는 Analytics

ly Account lew Project xisting Projects lanage Devices lanage Locations ian Out

Tornado Chart					
Project: OPIN OPEX MasterClass					
LCO	LCOE +/- %				
147.9	91	10			
Sele	ct a Change Paramete	r			
Ene	ergy				
	Curtailment Loss Fact	tor			
	Constraint Loss Facto	r			
	Transmission Loss Fac	ctor			
	Annual Delivered Ene	ergy			
Dev	ice:G128 5.0MW				
	No. of Units				
	Array Loss Factor				
	Availability Factor				
	Capacity Factor				
Ca	pex				
 Capex Total 					
Орех					
Opex Yearly Average					
Finance					
Reset					

Project Value	
-	
0.00 %	
0.00 %	
0.00 %	
166,581.53 MWh	
8.00	
0.00 %	
100.00 %	
47.54 %	
-	
167,200,000.00 (€)	
_	
5,000,000.00 (€)	
+	
	Calculate

LCOE	147.91			
Parameter Change	Output	10%	-10%	Delta
Annual Delivered Energy	LCOE	134.46	164.35	-29.88
Opex Yearly Average	LCOE	150.91	144.91	6.00
Capex Total	LCOE	159.70	136.12	23.58

Technology Innovation

Exceedence Finance can Quantify Cost Impact

of Technology Innovations

Floating Wind LCOE Reduction Pathway

LCOE (€/MWh)

data-pitch

INNOVATION PROGRAMME

Operational Wind Farms

https://exceedence.com/casestudies/

EXCEEDENC

A Financial Digital Twin for Renewable Energy Projects

Annicka WÄNN Head of Projects

🔀 annicka.wann@exceedence.com

Q&A

Please post your questions in the Q&A.

European Regional Development Fund