

driving industry by technology

Corrosion Monitoring for the ORE Sector

Jeroen Tacq, Sirris *Materials Engineer*

www.owi-lab.be

The challenge of corrosion Technical and economic consequences

Structural integrity

Safety

Mair

Maintenance costs

The challenge of corrosion Technical and economic consequences

+/- 3.8% of EU GDP 500 billion EUR

18% of OPEX3 billion EUR by 2030

Corrosion protection design

✓ Coatings
 ✓ Cathodic Protection
 ✓ Corrosion Allowance
 ✓ Material Choice

Submerged

zone

Atmospheric

zone

Burried zone

Corrosion protection design

Atmospheric

zone

Splash zone

Submerged zone

> Burried zone

© 2014 Forc Technology

Uncertainty remains

Design phase

Operational phase

Interpretation of inspection results

Lifetime

Corrosion protection design

Atmospheric

zone

Splash zone

Submerged zone

> Burried zone

© 2014 Forc Technology

Uncertainty remains

Trend towards increased monitoring in offshore wind.

Sector specific challenges

https://www.porttechnology.org

https://www.marinetraffic.com

Sector specific challenges

Unmanned

Not coming to port

Completely submerged

Window of opportunity

Wintertime

High inspection/repair cost

Industrial challenges

Reduction of Uncertainty

Potential (economic) benefits

Industrial challenges

Monitoring of CP efficacy Checking of design assumptions RUL and life extension O&M optimisation

Oxygen depletion? Changing water conditions? Below mudline? MIC? Corrosion rates?

Risk reduction/control

Philosophy of good documentation

Knowing the history of the structure

Confirm corrosion allowance not exceeded

Monitoring of CP efficacy Checking of design assumptions RUL and life extension O&M optimisation

Pit shape and size

Industrial challenges

Monitoring of CP efficacy Checking of design assumptions RUL and life extension O&M optimisation

Very limited Not a focus of corrosion monitoring (yet) **Health and Safety issues**

Reduction of Uncertainty

Corrosion Monitoring

What? (Parameters) How? (Technology)

Cathodic Protection

Corrosion rate

Corrosion Monitoring

Environment

Direct Corrosion Monitoring

- ✓ Reliable (weight loss)
- ✓ Type of corrosion
- Good reference for other methods

- × Need for retrieval
- × Slow response rate
- × Only historic data

- **Electronically connected to the structure**
- Easy and reliable
- ✓ Low maintenance
- ✓ Real-time data

(Response rate ~ Element thickness)

× No info on pitting

Electronically connected to the structure

Lessons learned

Corrosion coupons	ER sensors	
Location/Position	Location/Position	
Exposure time	Element material	
Starting conditions	Pitting/Fouling/MIC/Conductive	
 Electrical connection to structure 	scales	
	Combination with CP	
	Have a 'disconnected' sensor as a	
	reference	

"Corrosion coupons and ER sensors measure the corrosivity of the marine environment rather than actual changes in wall thickness."

Direct Corrosion Monitoring

✓ Immediate

measurement

 Qualitative pitting tendency

- × More complex
- × Representative for structure?

Measure current between two electrodes

 Direct wall thickness measurement

- × Measure from noncorroding side
- × Lower accuracy
- × Less good for pitting

Environmental Monitoring

Dxygen

Driving force for corrosion and one of the most critical environmental factors to monitor

- Optical sensors for best accuracy and long-term stability (vs. electrochemical)
 - Especially for confined spaces

(BSEE Offshore Wind

Recommendations)

Important in case of CP in a confined body of water

- Typically using pH-sensitive glass electrodes
- Often drifts slowly with time
 - Development of solid state pH sensors

Lessons learned

Lifetime of sensors should be very long, because corrosion is a slow process. Maintenance interval >> periodic inspection interval

- Energetically active sensors imply the presence of cables in the structure under monitoring
- Impact of fouling
- Need for frequent re-calibration (every few months)
- Include drop cell inspections
- Robustness of sensors and data acquisition
- Data quality

Lessons learned

Lifetime of sensors should be very long, because corrosion is a slow process. Maintenance interval >> periodic inspection interval

- Energetically active sensors imply the presence of cables in the structure under monitoring
- Impact of fouling
- Need for frequent re-calibration (every few months)
- Include drop cell inspections
- Robustness of sensors and data acquisition
- Data quality

"The sensors need more maintenance than the structure."

"Reduce uncertainty, not increase it."

Environmental Monitoring

Multi-sensor probes are available Some with anti-fouling measures

Anti-fouling measures

✓ Cleaning brush

🗸 UV

- Biocides (legal issues?)
- × Increased cost
- × Not maintenance free

Monitoring Strategy

What sensors and where?

- Depends on the purpose
- Build-in redundancy
- Higher risk of CP underprotection near seabed

Key elements

- ✓ Reference electrodes
- ✓ Coupons
- ✓ ER/LPR-probes
- ✓ Oxygen
- ✓ Temperature
- \checkmark Conductivity

Monitoring Strategy

Corrosion is a localized phenomenon. It is therefore necessary to identify the most critical points on the structure.

Corrosion models

Inspections

What could the future bring?

New Sensor technology

- ✓ More reliable sensors needed for environmental parameters
- ✓ Sensors for pitting needed
- ✓ Solutions for mudline corrosion monitoring/inspection
- ✓ Sensors for MIC? (Bio film thickness?)
- ✓ Monitoring of bolt corrosion?
- ✓ Acoustic emission as a promising technology?

What could the future bring?

Monitoring Strategy & Data interpretation

- Direct corrosion monitoring vs. environmental parameters
- Local vs. volume
- Environmental data to support interpretation of corrosion data
- Combination will likely yield the best result needed
- Accumulated corrosion risk as a means for RBI (based on corrosion and/or environmental monitoring)

Questions?