

Monitoring and Modeling of the durability of Reinforced Concrete in marine environnement: state of the art and challenges

Pr. F. Schoefs

et al. (E. Bastidas, Y. Lecieux, M. Torres, M. François, C. Lupi, D. Leduc, S. Bonnet, I. Othmen, C. Clerc, M. Oumouni, ...)

TRUST Group, GeM lab UMR CNRS GeM CEO Sea and Littoral Research Institute

• Part 1 – Why monitoring?

High costs of maintenance in complex (marine) environment:

Key issues: logistic governs the costs and marine conditions governs the feasibility (storms)

- Increase quality control during manufacturing (traceability) >> NDT (intrusive for manufacturing process) or SHM (intrusive but used during operation too) >> added value to be quantify
- Optimize maintenance by selected the good maintenance time and action (preventive) >> added value of SHM

• Part 1 – Why monitoring?

High costs of maintenance in complex (marine) environment:

Key issues: logistic governs the costs and marine conditions governs the feasibility (storms)

- Increase quality control during manufacturing (traceability) >> NDT (intrusive for manufacturing process) or SHM (intrusive but used during operation too) >> added value to be quantify
- Optimize maintenance by selected the good maintenance time and action (preventive) >> added value of SHM
- Get a feedback for the next design (reported depreciation)

Quantify the added value of SHM (COST action 1402):

- Compute the benefit // NDT based maintenance
- Include **all the costs**: sensor, implementation, data processing (soft and hardware), maintenance (non infinite lifetime)

• Part 3 – technologies and the needs

Feedback from O&G

- 1973 : the first offshore platform in Concret (DORIS) >>
- 1997 : the biggest (DORIS) >> Hibernia

Interreg

BUT

- ► financial context (O&G <> MRE) >> over-sizing in O&G
- ▷ Only a few feedback:
- few dozen in various sites // 8000 steel structures
- ► New challenges: mooring and anchoring systems: still an issue

dynamic and cyclic loading on the anchoring system

OWT with a monopile substructure and detail of a grouted joint (DNV, 2014)

OWT with a tripod / jacket substructure and detail of a grouted joint (Schaumann et al., 2013)

Significant sliding damages of grouted connections have been reported in 2009-2010

- 600 of the 988 monopile OWTs in the North Sea 60% !!
- Cylindrical with shear keys + conical design recommended (DNVOS- J101 (2014), DNV-OS-C502 (2012), DNVGL-ST-0126 (2016))

 Part 3 – technologies and the needs

GROUTING

ITN OCEANET (UN, U Hannovre, Franhaufer, Whölfel) + SHM-OWT-Grout (UN, IFSTTAR, Keops, Charier)

FBG2.5

FBG1.4

FBG1.4

FBG1.4

FBG1.2

FBG2.1

FBG1.1

FBG1.1

FBG1.1

FBG1.1

IRM Offshore and Marine Engineers

Shear keys

 Part 3 – technologies and the needs

GROUTING

Monitoring of the appearance of nonlinearities and selection of a Damage Indicator DI

Part 3 – technologies and the needs

Damage and Chloride Ingress

Reduce time of onshore and maritime opérations (prefabrication of systems)

Part 3 – technologies and the needs

Damage and Chloride Ingress 3D monitoring of stresses (patent Sentilel)

Part 3 – technologies and the needs

Stresses 3D monitoring of stresses

State of the Art

opean Regio

document Fund

 Part 3 – technologies and the needs

Conclusion

- A lot of progresses since the early 90's:
- Understanding of physical and mechanisms
- Stochastic modelling of chloride ingress
- Monitoring

Resilient challenges

- Fatigue
- Redundant monitoring for chloride ingress + corrosion threshold > SmartCore and Regional Project in Nantes
- Spatial variability (PhD defense in january 2021)
- Biofouling of concrete (reef effect)
- Effect of climate change (https://www.researchgate.net/project/Climate-change-effects-and-adaptation-of-civil-infrastructure-and-buildings)

More information

- <u>https://www.researchgate.net/project/DURATINET</u>
- https://www.researchgate.net/project/Universite-de-Nantes-in-EC-COST-Action-TU1402-Quantifying-Value-of-SHM
- <u>https://www.researchgate.net/project/Structural-Health-Monitoring-of-Coastal-and-Offshore-Structures</u>
- <u>https://www.researchgate.net/project/Probabilistic-modeling-of-degradation-processes</u>
- https://www.researchgate.net/project/Behavior-inspection-monitoring-and-maintenance-of-structures-

special-focus-on-structures-in-marine-environnent

APPEL A PROJETS EMR-ITE 201