

Circular Zero-Emission Hydrogen Propulsion System Short-Sea Application

Introduction

- Shipping is one of the most efficient way of transportation.
- However, 940 Million tonne CO_2 (using ~300 Million tonne Diesel) by maritime industry in 2019.
- And is responsible for 2.5% of global Green-House Gas (13% of Europe) emissions.

Maritime fuel and emissions, 2019		
Compound	Million tonne	
Marine Diesel	300	
CO ₂	940	
NO_x	20	
SO _x	6	
Particular Matter (PM)	1	
Hydrocarbon (HC)	1	

PDEng project (TUDelft, H2SHIPS)
 Conceptual design of a sodium borohydride fueled hydrogen propulsion plant for a short sea cargo ship

The goal of Maritime Hydrogen B.V.

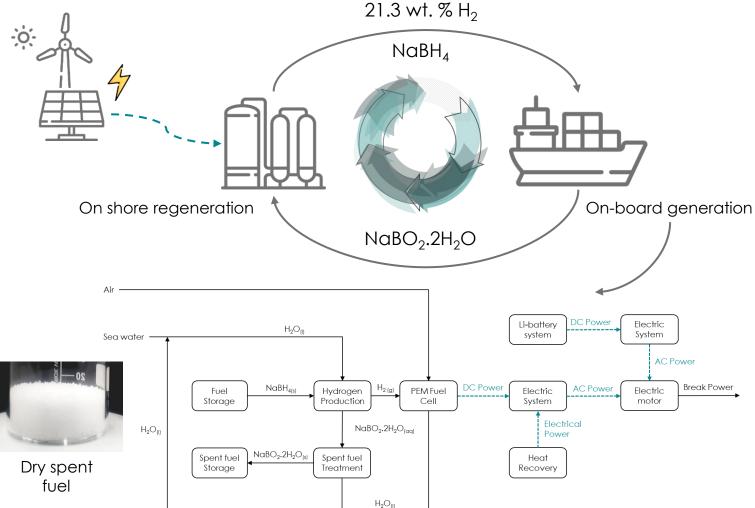
Process and Equipment design of marine hydrogen fueled propulsion system using circular zero emission hydrogen carrier

MARITIME HYDROGEN

Circular Hydrogen Solution

NaBH₄ Advantages:

High energy density


Less toxicity

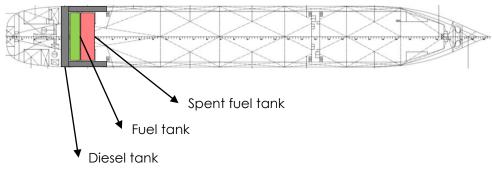
Non-explosive

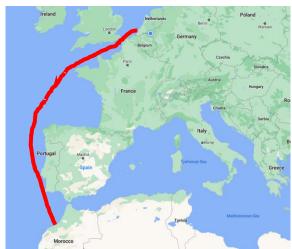
Less flammable

Environmentally friendly

Easy to store and handle

 H_2 Generation


Reaction Effluent

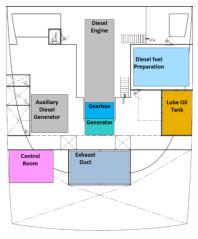


Short-Sea Shipping Application (MS PIONEER)

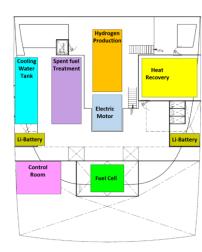
Parameter	Unit	Value
Deadweight	tonne	11,000
Cargo capacity	m^3	13,000
Installed engine	MW	4
Maximum speed	kn	14
Average power	MW	2.5
Average speed	kn	11

Port of Rotterdam ⇔ Port of Casablanca 3400 nm – 13 days

Parameter	Unit	Diesel ¹	NaBH ₄
Power generator	-	ICE ²	PEMFC ³
Fuel	tonne (m³)	190 (220)	240 (340)
Spent fuel	tonne (m³)	-	640 (520)
Cargo capacity	tonne	10,810 (-2%)	10,300 (-7%)
	m^3	13,000 (-0%)	12,000 (-8%)
CO ₂	tonne	600 4	0
Noise level	dB	1105	<60


Note 1: Marine Diesel Oil (MDO)

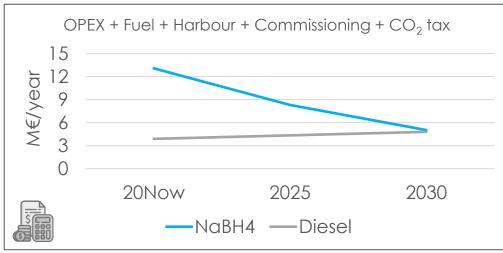
Note 2: Internal Combustion Engine

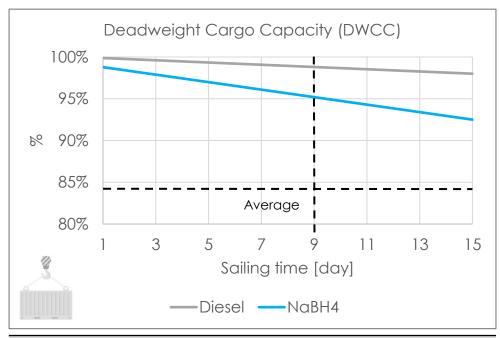

Note 3: Proton-Exchange Membrane Fuel Cells

Note 4: Also, 4 tonne SO_x, 12 tonne NO_x, 0.5 tonne HC, 0.3 tonne PM

Note 5: Maximum allowable dB for human is 85.

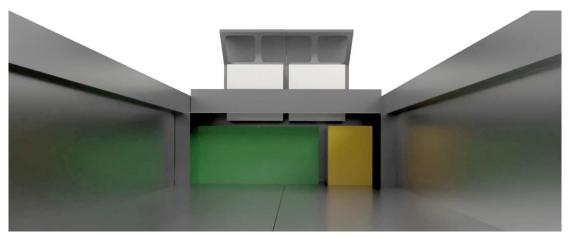
Before Retrofit




After Retrofit

CAPEX, OPEX, and Cargo Capacity

Fuel	Subsidy for (M€/year)	20Now	2025	2030
MarDII	Retrofitting	9.6	4.8	1.5
NaBH ₄	New build	10	5.3	2

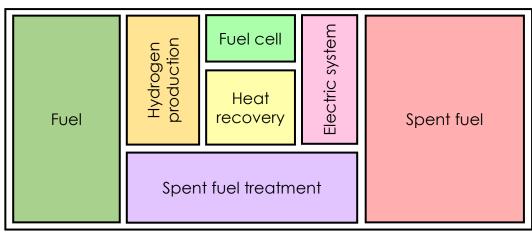

Subsidy can be paid from extra:

- CO₂ tax
- Harbour costs
- Commissioning costs
- Gross freight

- MARITIME HYDROGEN

Technology would also fit for an inland ship

Specification of the modular 300 kW Metal Borohydride PEM fuel cell system



300 kW power supply (green box) and 400 kWh Li-battery (yellow box)

Forklift storage underneath the "erf"

Dir	nensions	Unit	Value
ner	Length	m	6
Container	Width	m	2.4
Co	Height	m	2.3
	Length	m	8
Storage	Width	m	2.5
Stc	Height	m	2.5

Plant layout top view

Specifications (Generation)	Unit	Value
AC output power	kW	316
Operating time	days	2
Initial weight	tonne	19.8
Final weight	tonne	27.4
NaBH₄ capacity	tonne (m³)	4.5 (6.5)
Spent Fuel capacity	tonne (m³)	12.1 (9.8)

Conclusion

Borohydrides fuelled hydrogen fuel cell propulsion system are promising technologies for the maritime industry;

However, challenges are:

- a. Spent fuel regeneration economics
- Fuel bunkering infrastructures and logistics
- Minimize loss of maximum cargo capacity

Two ongoing projects are being done for on-board generation and spent fuel regeneration proof of concept at TUDelft, UvA, TUW.

