
Decarbonizing the transport sector, an overview of the strengths, weaknesses and opportunities of different technologies.

• Saarbrücken 24.02.2022

Pedro Aguilar Email: aguilar@izes.de

Ministerium für Interreg Wirtschaft, Arbeit, Energie und Verkehr North-West Europe SAARLAND GenComm gGmbH Institut für ZukunftsEnergieund Stoffstromsysteme Worldwide CO2 emmisions by sector 35000 Introduction 32500 **Global warming** 30000 **Rising temperatures** 27500 **Greenhouse Gases** 25000

Data of CO2 by sector from [IEA1] and data of transport emissions 2018 from [OWD1]

Interreg

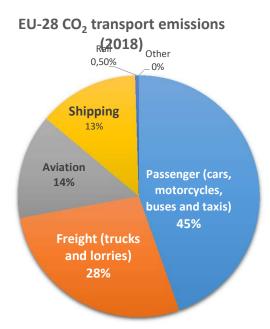
Total CO₂

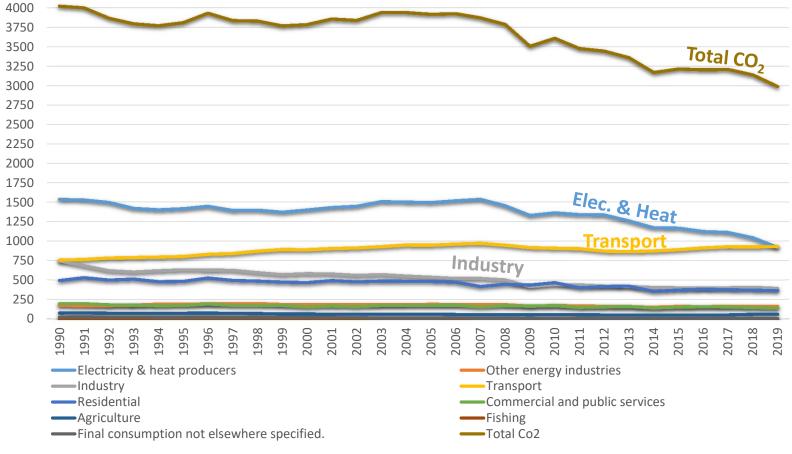
GenComm

North-West Europe

Interreg North-West Europe

of

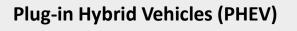

tonnes


Millions of

EU-28 CO2 emissions by sector

EU-28 CO₂ emissions

- Significant progress have been achieved during the last C02 decade.
- Transport sector emissions continue to increase.



Data of CO2 by sector from [IEA1] and data of transport emissions 2018 from [EEA1]

Battery Electric Vehicles (BEV)

Fuel Cell Electric Vehicles (FCEV)

Synthetic Fuels (E-fuel)

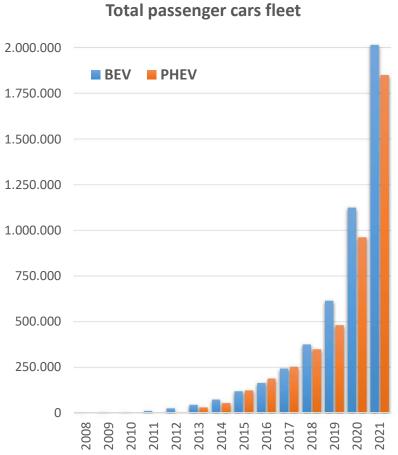
- Electricity source.
- Battery raw materials
- Range/mass ratio
- Price
- Electricity source
- Fossil fuels still an issue
- Transition technology
- Hydrogen source
- Fuel cell and battery raw materials
- Overall energy efficiency
- Price & adoption.
- Overall energy efficiency
- Cost
- Electricity and raw materials source.

EU-28 Clean electricity generation

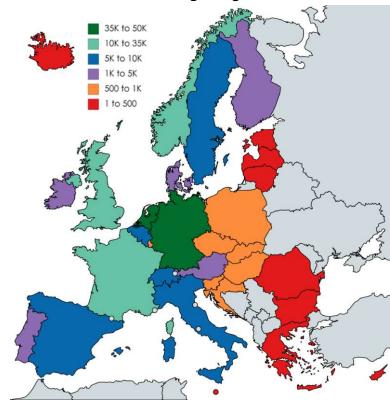
BEVs & PHEVs

- ZERO greenhouse gas emissions*
- Mass adoption.
- Growing infrastructure.
- Raw materials
- Price
- Range vs. Mass ratio.

100,00	2		m	m	ņ	9	2	ŋ	9	9	ы	2	Q	m	8	m	m	8	0	ы	ю	2	2	Q	9		0	ы	00	ნ	2
90,00	12,0	12,3	13,03	13,2	13,4	13,1	12,8	12,99	13,3(13,3(13,6	14,1	12,5	12,1	12,98	12,83	13,1	13,6	14,7	16,1	17,4	17,4	19,7	22,4	23,9	24,3	24,60	24,8	27,1	28,7	31,9
80,00	87,93	87,63 12,3	86,97	86,77	86,57	86,84	87,18	87,01	86,64	86,64	86,35	85,88	87,44	87,87	87,02	87,17	86,87	86,32	85,30	83,85	82,55	82,58	23								
70,00												~								ö	82	82	80,23	77,60	76,04	75,63	75,40	75,15	72,82	21	
60,00																													2	71,21	68,08
50,00																															
40,00																															
30,00																															
20,00																															
10,00																															
0,00																															
	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
	■ Not Clean (Coal, Oil, Natural gas, etc) ■ Cle													Clean (Hydro, Geothermal, Solar, Wind, etc)																	

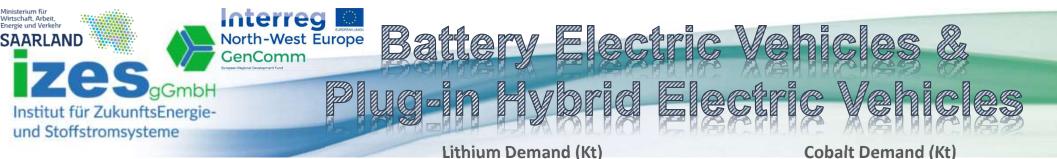

* When the electricity comes from 100% renewable sources & only electric driving is used (PHEVs)

Data of electricity generation from [IEA1]

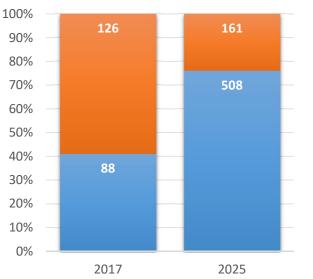


BEVs & PHEVs

- ZERO greenhouse gas emissions*
- Increasing adoption from the general public.
- Growing infrastructure.
- Raw materials
- Price
- Range vs. Mass ratio.



Distribution of amount of charging stations in the EU at the beginning of 2020


* When the electricity comes from 100% renewable sources & only electric driving is used (PHEVs)

Data for passengers car fleet & charging stations from [EAFO]

BEVs & PHEVs

- ZERO greenhouse gas emissions*
- Increasing adoption from the general public.
- Growing infrastructure.
- **Raw materials**
- **Price**
- Range vs. Mass ratio.

■ For battery production ■ For other purposes

- **Current capacity + reserves does** \geq not cover predicted demand for 2030.
- Prices of the metal will increase as scarcity becomes more apparent.

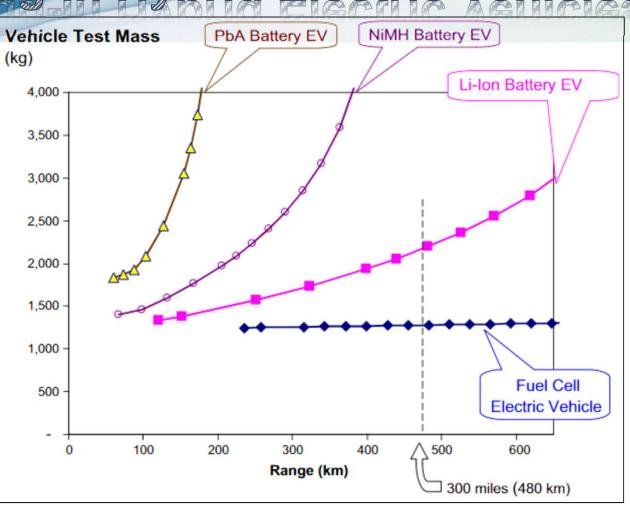
Cobalt Demand (Kt)

For other purposes For battery production

- ~70% of extraction is located in the DRC \triangleright
- ~60% of refinement facilities are in China \triangleright
- Extraction occurs as by-product of copper or nickel
- Artisanal and unregulated mining in DRC
- Expected demand for 2030 on parity with reserves.

* When the electricity comes from 100% renewable sources & only electric driving is used (PHEVs)

Data from [ACH18].

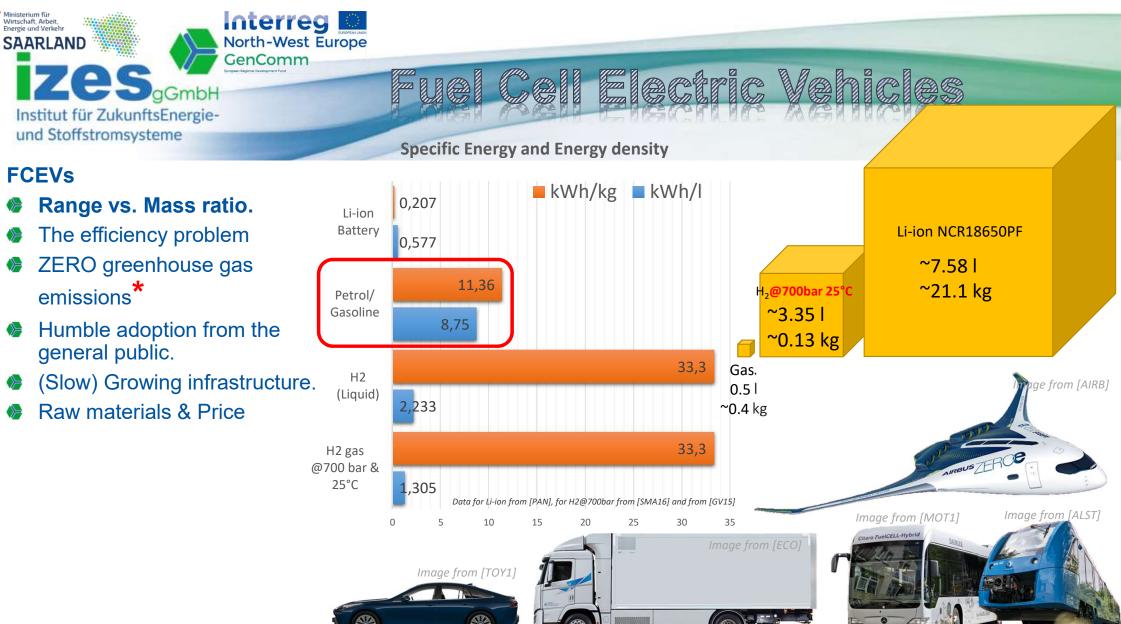


BEVs & PHEVs

Ministerium für Wirtschaft, Arbeit, Energie und Verkehr

SAARLAND

- ZERO greenhouse gas emissions*
- Increasing adoption from the general public.
- Growing infrastructure.
- Raw materials
- Price
- Range vs. Mass ratio.

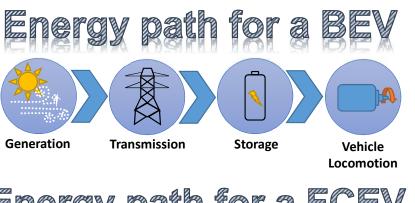

* When the electricity comes from 100% renewable sources & only electric driving is used (PHEVs)

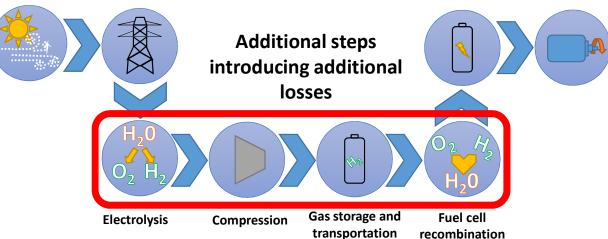
North-West Europe

GenComm

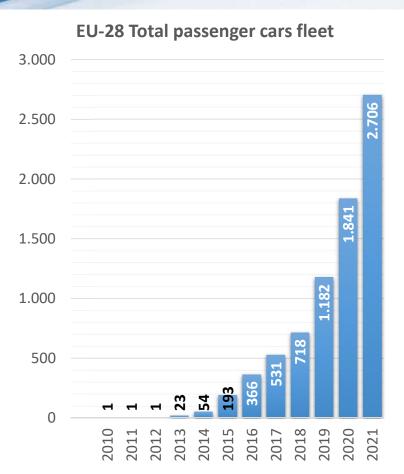
Bat

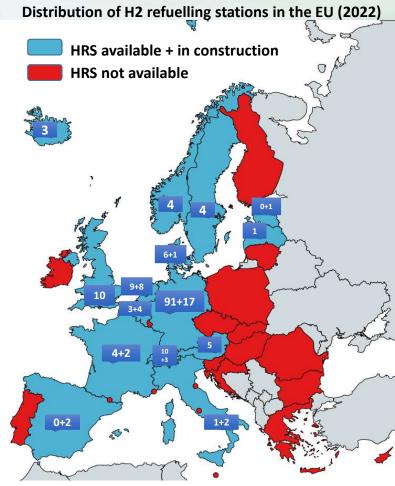
Image from [Tho14]




* When the Hydrogen comes from 100% renewable sources.

- Range vs. Mass ratio.
- The efficiency problem
- ZERO greenhouse gas emissions*
- Humble adoption from the general public.
- (Slow) Growing infrastructure.
- Raw materials & Price




* When the Hydrogen comes from 100% renewable sources.

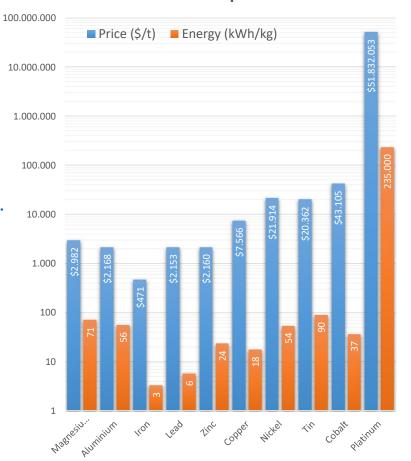
FCEVs

- Range vs. Mass ratio.
- The efficiency problem
- ZERO greenhouse gas emissions*
- Humble adoption from the general public.
- (Slow) Growing infrastructure.
- Raw materials & Price

* When the Hydrogen comes from 100% renewable sources.

Data for passengers car fleet vehicles from [EAFO] & charging stations from [H2I]

IZES gGmbH Institut für ZukunftsEnergieund Stoffstromsysteme


Ministerium für Wirtschaft, Arbeit, Energie und Verkehr SAARLAND

FCEVs

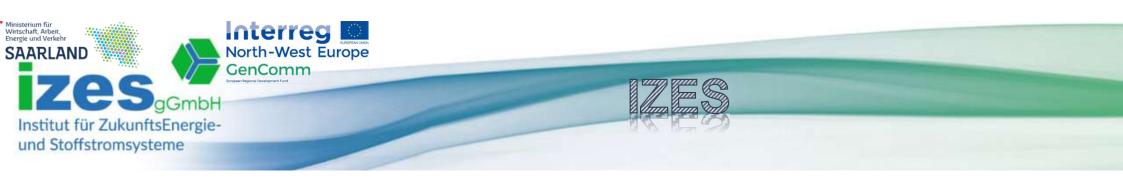

- Range vs. Mass ratio.
- The efficiency problem
- ZERO greenhouse gas emissions*
- Humble adoption from the general public.
- (Slow) Growing infrastructure.
- Raw materials & Price

Fuel Cell Electric Vehicles

Energy consumption and price of different metals per tonne

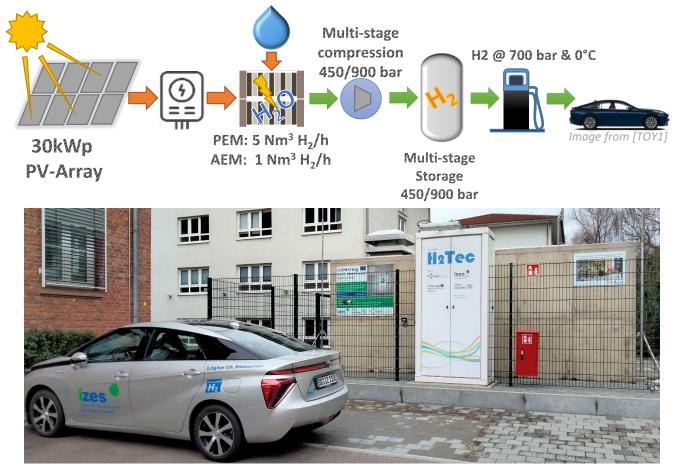
Share of the cost of different

Data of metals from [AFK12] & for powertrains from [MCK19]


 $\ensuremath{^*}$ When the Hydrogen comes from 100% renewable sources.

E-fuels

- It gives continuity to state-ofthe-art fossil-fuel-based technology.
- Current technology allows to manufacture E-fuels for all main mobility sectors
- Hydrogenated vegetable oils, Biodiesel, RME, methanol mixes are already in use in many regions.
- ♥ Efficiency and complexity of the processes go far beyond that of the case of H₂→ lowest energy efficiency.



Hydrogen Refueling Station @ IZES

- At IZES we join the Hydrogen-based energy revolution with the installation of our own HRS.
- Green Hydrogen will be produced using solar energy coming from a recently installed PV array.
- The HRS is equipped with a PEM electrolyser and a AEM electrolyser.
- A Toyota Mirai has also been integrated to the fleet of the institute.

GenComm partners (+ new partners in CapCall)

Belfast Metropolitan College (UK); Energia Group (UK); HyEnergy (UK); Pure Energy Centre (UK); National University of Ireland Galway (ROI); TK Renewables (UK); BURN Joint Research Group, Vrije Universiteit Brussels (BE); INSA Rouen Normandie (FR); ENSICAEN Caen (FR); IZES (DE); University of Luxembourg (LU)

Hydrogen Refueling Station @ IZES

- The HRS is already in place next to the main building of the institute.
- Operation is expected to begin soon during this 2022.
- Future research aims to evaluate lifetime and degradation of the stacks, compare efficiencies of both devices and create a prediction model for future plants of similar layout.

- None of the technologies offers a complete solution.
- The current state of affairs should be taken more like a collaboration instead of a technological competition.
- The decarbonisation of the transport sector requires faster deployment of renewable electricity generation plants and it goes hand in hand with the availability of clean electricity.

Literature and References

- [ACH18] Azevedo M, Campagnol N, Hagenbruch T, Hoffman K, Lala A, Ramsbottom O. Lithium and cobalt-a tale of two commodities. McKinsey&Company Met Min 2018:p1-25.
- [AFK12] Alonso E, Field FR, Kirchain RE. Platinum availability for future automotive technologies. Environ Sci Technol 2012;46:12986–93. https://doi.org/10.1021/es301110e.
- [AIRB] ZEROe Towards the world's first zero-emission commercial aircraft. <u>URL:https://www.airbus.com/en/innovation/zero-emission/hydrogen/zeroe</u>, visited on February 17th, 2022.
- [ALST] Alstom to test its hydrogen fuel cell train in the Netherlands. URL: <u>https://www.alstom.com/press-releases-news/2019/10/alstom-test-its-hydrogen-fuel-cell-train-netherlands</u>, visited on February 17th, 2022.
- [BUG] Jacob & Co. x Bugatti Chiron Tourbillon is the first all-new timepiece of this partnership. URL: <u>https://newsroom.bugatti/en/feature-stories/jacob-co-bugatti-chiron-tourbillon-is-the-first-all-new-timepiece-of-this-partnership</u>, visited on February 17th, 2022
- [CRP1] Consumer Reports: Toyota Prius 2022. URL: <u>https://www.consumerreports.org/cars/toyota/prius/2022/overview</u>, visited on February 14th, 2022.
- [CRP2] Consumer Reports: Dodge Challenger 2022. <u>URL:</u> <u>https://www.consumerreports.org/cars/dodge/challenger/2022/overview/</u>, visited on February 14th, 2022.
- [EAFO] European Alternative Fuels Observatory. URL: <u>https://www.eafo.eu/alternative-fuels/electricity/charging-infra-stats</u>, visited on February 15th, 2022.

Literature and References

- [ECO] Hyundai bringt Wasserstoff-Lkw Xcient nach Europa. URL: <u>https://ecomento.de/2020/07/09/hyundai-bringt-wasserstoff-lkw-xcient-nach-europa/</u>, visited on February 17th, 2022.
- [EEA1] Share of transport greenhouse gas emissions. URL: <u>https://www.eea.europa.eu/data-and-maps/daviz/share-of-transport-ghg-emissions-2/#tab-googlechartid_chart_13</u>, visited on February 14th, 2022.
- [ENV] Rapeseed (Brassica napus), rape, oilseed rape field. Bright-yellow flower Brassica napus close up. URL: <u>https://photodune.net/item/rapeseed-brassica-napus-rape-oilseed-rape-field-brightyellow-flower-brassica-napus-close-up/31447469</u>, visited on February 17th, 2022.
- [FARM] How To Grow Sweet Corn. URL: <u>https://www.farmersalmanac.com/how-to-grow-sweet-corn</u>, visited on February 17th, 2022.
- [GV15] Gupta R, Basile A, Veziroglu N. Compendium of Hydrogen Energy. Volume 2: Hydrogen Storage, Distribution and Infrastructure. Compend Hydrog Energy 2015.
- [H2I] H2.LIVE. Wasserstofftankstellen in Deutschland & Europa n.d. URL: <u>https://h2.live/</u>, visited on November 18th, 2022
- [HDDM18] Harendt B, Doser JW, Dietrich N, Mayer CA, Erling UM. Berichterstattung 2018 Elektromobilitätsgesetz (EmoG) 2018.
- [IEA1] IEA Data and statistics. <u>URL: https://www.iea.org/data-and-statistics/data-browser?country=WORLD&fuel=Energy%20supply&indicator=TESbySource</u>, visited on February 14^h, 2022

Literature and References

- [LUFT] Airbus A380-800. URL: <u>https://www.lufthansa.com/us/en/388</u>, visited on February 17th, 2022
- [MAN] Promoting cleaner shipping with container vessels. URL: <u>https://www.man-es.com/marine/applications/container</u>, visited on February 17th, 2022
- [MCK19] McKinsey & Company. Reboost: A comprehensive view on the changing powertrain component market and how suppliers can succeed 2019:79.
- [MOT1] Brennstoffzellen-Bus: Mercedes Citaro FuelCell Hybrid (2009). <u>URL:</u> <u>https://de.motor1.com/news/163654/mercedes-citaro-fuelcell-hybrid-stadtbus-mit-brennstoffzellen/</u>, visited on February 17th, 2022
- [OWD1] Our World in Data. Transport. URL: <u>https://ourworldindata.org/transport</u>, Visited on February 14th, 2022.
- [PAN] Panasonic. Lithium Ion NCR18650PF 2016:1.
- [SMA16] Stetson NT, McWhorter S, Ahn CC. Introduction to hydrogen storage. Compend Hydrog Energy 2016:3– 25. https://doi.org/10.1016/B978-1-78242-362-1.00001-8.
- [Tho14] Thomas C. (Sandy). Fuel Cell and Battery Electric Vehicles Compared 2014:1–12.
- [TOY1] Toyota Mirai Austattungen & Spezifikationen. <u>URL:https://www.toyota.de/automobile/mirai/ausstattungen-und-spezifikationen</u>, visited on February 14th, 2022.
- [TSL1] Tesla Model S. URL: <u>https://www.tesla.com/en_eu/models</u>; visited on February 14th, 2022.

Thank you