

5th webinar:
Communication
strategy – How
to reach identify
end users?

DR. GUSTAV BÖSEHANS GUSTAV.BOSEHANS@NCL.AC.UK

OVERVIEW

Part I

- Definition of an 'eHUB'
- Identifying potential target groups

Part 2

 Comparing actual and intended use of shared (electric) vehicles

PART I - DEFINITION OF AN eHUB

A mobility hub with at least two different shared electric vehicle types (e.g., any combination of shared electric bikes, cargobikes, cars, and/or scooters)

PART I

Identifying potential eHUB user groups via cluster analysis

WHO DO **WE** WANT TO USE SHARED MOBILITY HUBS?

Everyone, but especially frequent car users

But who does actually want to use eHUBS?

PART I – NON-USER QUESTIONNAIRE (N = 2493)

- What? → Attitudes, Demographics, General travel behaviour
- Who? → Survey of the general population across 7 European cities

- Why? → Identify likely target groups, estimate mode shift and emissions
- When? → Before implementation of the mobility hubs (March 2020)
- How? → Survey administered online and distributed via cities/polling agencies

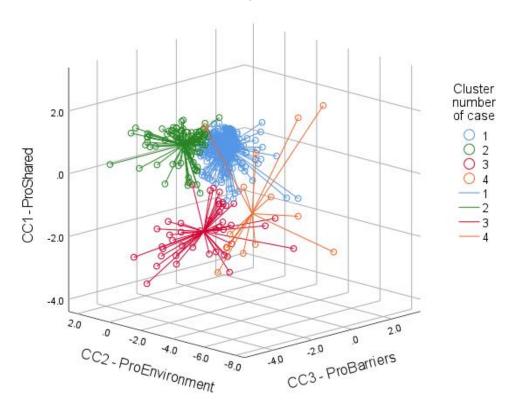
IDENTIFYING POTENTIAL eHUB USER SEGMENTS

Newcastle

Jniversity

Method

- Measure attitudes towards the environment, shared mobility, and car use, using 20 Likert-scale items
- Factor-analyse items to derive common factors and use these factors to cluster
- Compare clusters based on demographic information and other variables of interest


Step I - Categorical Principal Component Analysis (CATPCA)

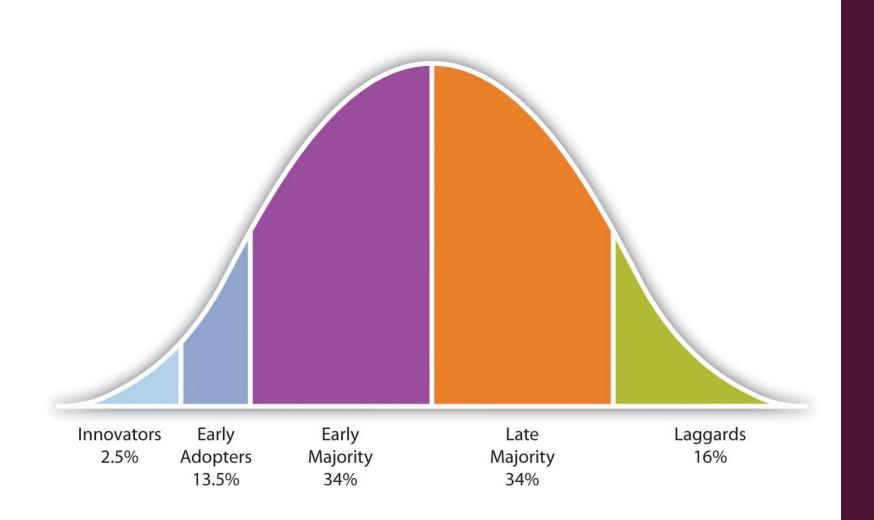
Step 2 - Cluster analysis

Step 3 - Comparison of clusters

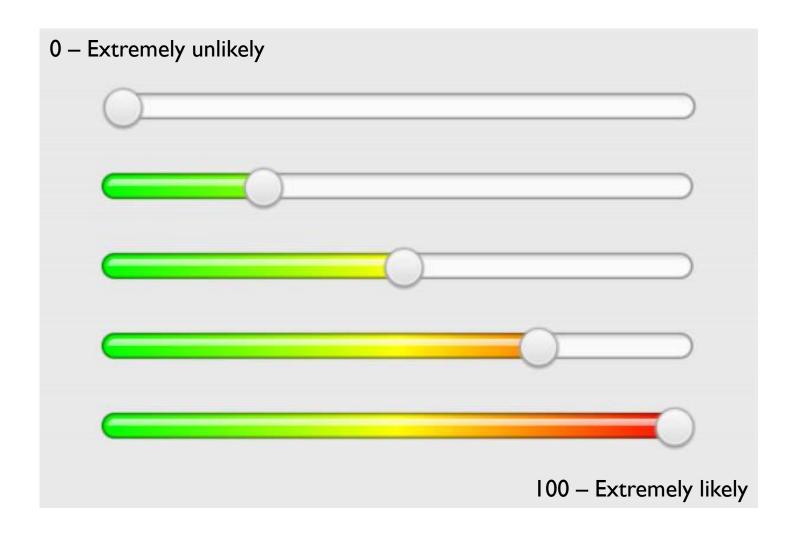
IDENTIFYING POTENTIAL eHUB USER SEGMENTS (N = 505)

3d scatterplot of clusters

Final cluster centres


Component means / standard deviations	1	2	3	4	Total
Positive attitude towards shared mobility	0.2 / 0.4	0.5 / 0.6	-2.5 / 0.7	-1.0 / 1.7	0/1
Pro-environmental attitude	-0.0 / 0.5	0.5 / 0.5	0.8 / 0.9	-4.2 / 1.0	0/1
Barriers towards shared mobility use	0.5 / 0.4	-1.3 / 0.9	-0.0 / 1.2	-1.6 / 1.6	0/1
Number of respondents (N)	346	97	44	18	505
% of sample	69%	19%	9%	3%	100%

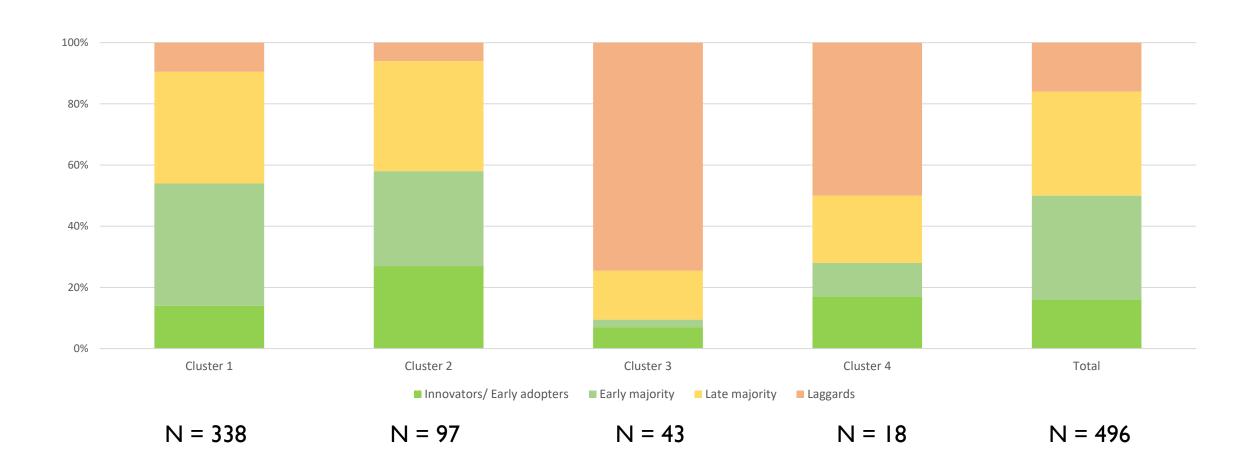
CLUSTERS I (N = 346) AND 2 (N = 97)


- Both score positive on pro-shared mobility attitude
- C2 also scores positive on pro-environmental attitude
- Age between 18 to 44 years (C1:65%, C2:57%) / Children in household (C1:57%)
- Highest car ownership (C1: 73%) / Highest proportion of frequent cyclists (C2: 57%)
- Greatest intention to use shared electric vehicles (especially C2: Int e-car = 69/100)
- CI Car-dependent family C2 Multimodal Maas-ready

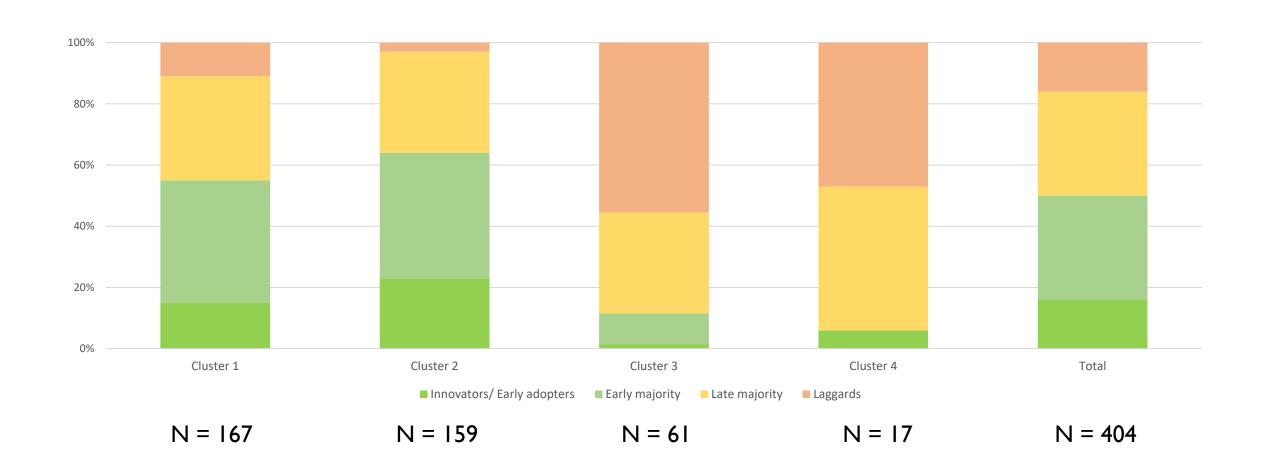
CLUSTERS 3 (N = 44) AND 4 (N = 18)

- Both score negative on pro-shared mobility attitude
- 73% of respondents in C3 are 45 or older (61% in C4)
- 83% of respondents in C4 have no children in household (68% in C3)
- 48% of respondents in C3 and 44% in C4 are not working / employed
- Lowest intention to use shared vehicles BUT C3 also most satisfied, while C4 least
- C3 Anti-Maas individuals C4 Cautious Captives

CLUSTERS
ACCORDING TO
DIFFUSION OF
INNOVATION
THEORY



INTENTION TO USE SHARED ELECTRIC VEHICLES

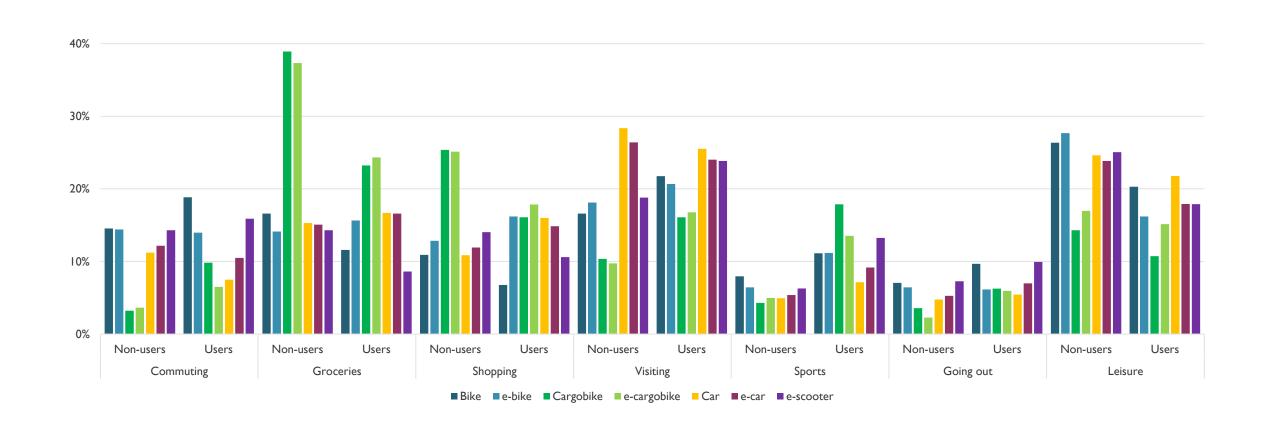

ASSIGNING RESPONDENTS TO DOI CATEGORIES

e-bike Intention	e-car Intention	Total Score	Cluster	DOI Category
100	100	200	1	Innovators and early
				adopters
•••	•••	•••		(top 16%)
83	86	169	2	
86	82	168	2	Early majority
•••				(next 34% of scores)
67	53	120	1	
30	90	120	1	Late majority
				(next 34% of scores)
	•••			(Treste & 170 & 1 decire)
18	30	48	2	
31	15	46	1	Laggards
				(bottom 16%)
	•••	•••	•••	
0	0	0	3	

CLUSTERS ACCORDING TO DOI ADOPTER CATEGORIES (AMS)

CLUSTERS ACCORDING TO DOI ADOPTER CATEGORIES (MAN)

PART 2 – SHARED MOBILITY USER QUESTIONNAIRE (N = 980)


- What? → Attitudes, Demographics, Shared mobility intentions / use
- Who? \rightarrow Shared mobility users (N = 247) and non-users (N = 733)

- Why? → Explore attitudes, estimate mode shift and emission savings
- When? → After implementation of the mobility hubs (Sep 2021- Jan 2022)
- How? → Survey administered online and distributed via cities/polling agencies

ACTUAL AND INTENDED USE OF SHARED (ELECTRIC) VEHICLES

LAST TRIP MODE SUBSTITUTION BY SHARED MOBILITY USERS

Substituted mode	Shared car	Shared bike	Shared cargo-bike	Shared e-car	Shared e-bike	Shared e- cargo-bike	Shared e- scooter	Total
Walking	1	8	1	1	4	2	1	18
	1%	16%	5%	3%	13%	11%	7%	7%
Cycling	12	12	5	2	11	4	2	48
	17%	24%	25%	5%	35%	21%	13%	19%
Motorbike	1	1	1	1	0	0	0	4
	1%	2%	5%	3%	0%	0%	0%	2%
Private car	14	6	4	14	6	11	3	58
	19%	12%	20%	36%	19%	58%	20%	23%
Carpooling/lift	5	4	3	2	2	0	1	17
	7%	8%	15%	5%	6%	0%	7%	7%
Public transport	25	15	2	12	5	1	7	67
	35%	29%	10%	31%	16%	5%	47%	27%
Ride hailing (e.g., Uber, taxi)	3	1	0	0	0	0	0	4
	4%	2%	0%	0%	0%	0%	0%	2%
I would not have made the trip	11	4	4	7	3	1	1	31
	15%	8%	20%	18%	10%	5%	7%	13%
Total	72	51	20	39	31	19	15	247

SUMMARY AND CONCLUSIONS

- Maas-ready individuals do not need convincing shared mobility hubs
- Car-dependent families are the primary target group if car use reduction is targeted
- Some older people with fewer transport options may benefit from shared options
- Actual and intended use of shared vehicles is very similar for most shared modes
- Shared vehicles are just as likely to replace PT & Cycling as private car use

THANK YOU!

QUESTIONS?

GUSTAV.BOSEHANS@ NEWCASTLE.AC.UK