

Algae growth on CO₂ from (combusted) biogas

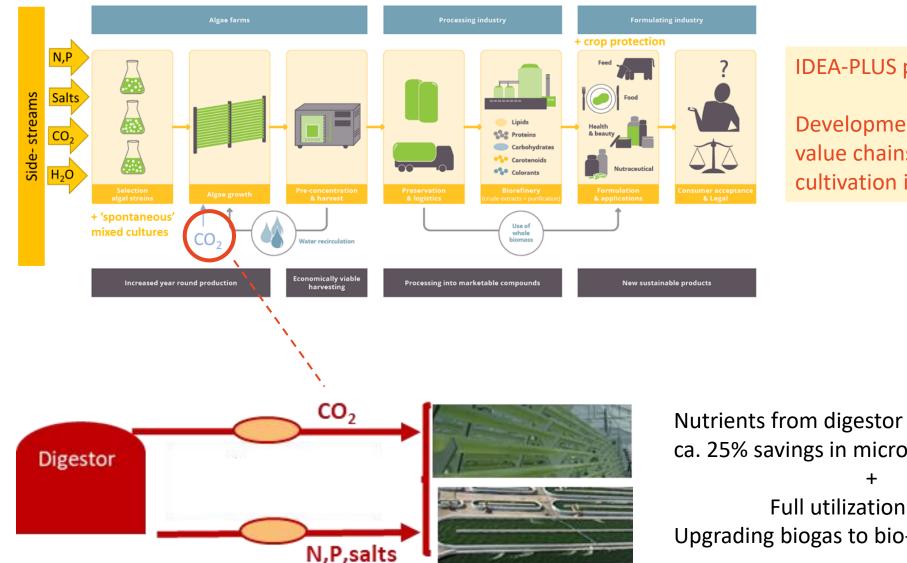
Final IDEA+ event, September 2023

Wim Brilman – University of Twente Kris Heirbaut – Heirbaut Algriculture

Capture and separation of CO₂/CH₄ gases from biogas

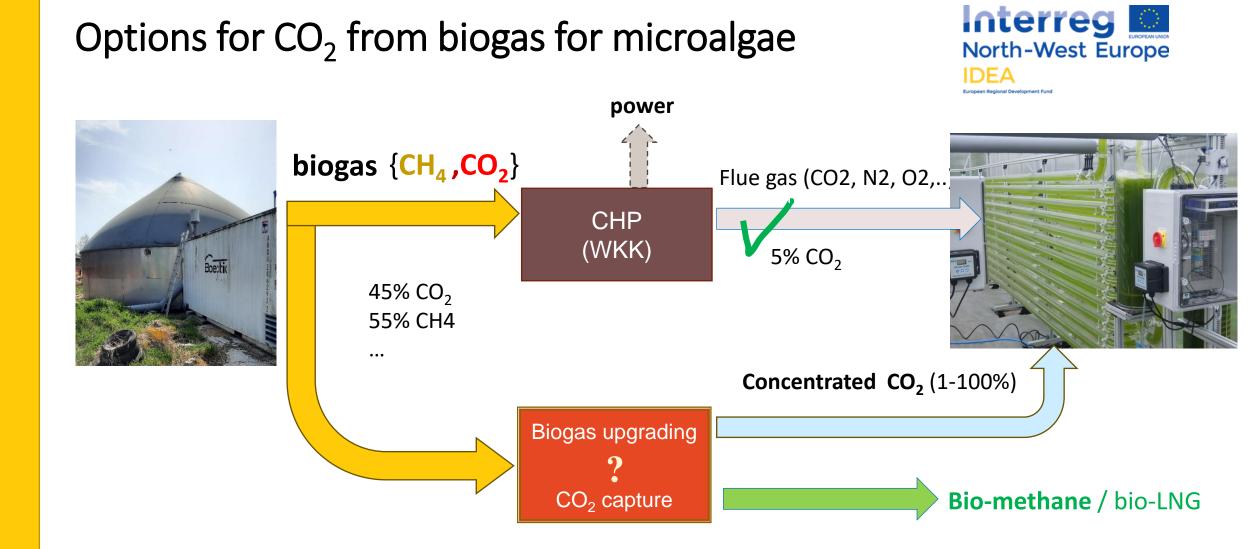
Final IDEA+ event, September 2023

Wim Brilman


co-workers:

Abhinav Srinivas Michel Schellevis Diana Siretanu Niels Mendel

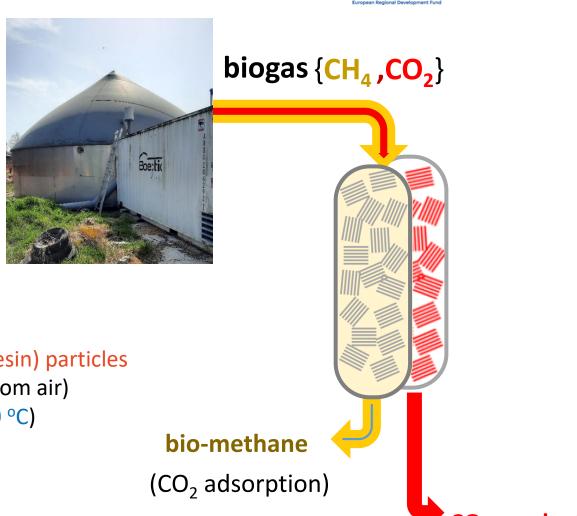
CO₂ from biogas for microalgae



IDEA-PLUS project:

Development of economic viable value chains based on micro-algae cultivation in NW-EUROPE

Nutrients from digestor (N,P, minerals $and CO_2$): ca. 25% savings in microalgae cultivation costs Full utilization of biogas by Upgrading biogas to bio-methane or bio-LNG



- Existing upgrading techniques (membranes, aq.amine scrubbers) are not economic at small (farm) scale
- Separating CO₂ and CH₄ (methane): option to feed methane to gas grid.

Two technologies

Requirements:

- Robust technology
- high methane recovery (>99.5%)
- 'low' temperature and pressure
- min. energy requirement

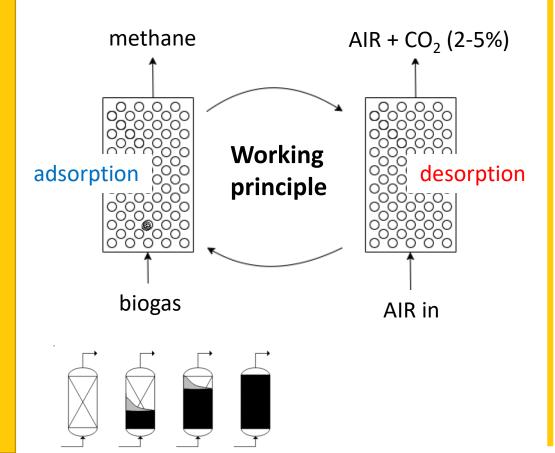
Interreg

North-West Europe

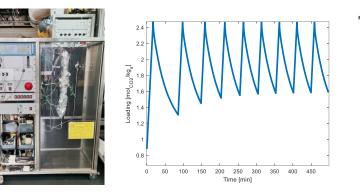
Two concepts developed :

- **Option 1**: <u>Fixed bed</u> of polymer IER (ion exchange resin) particles (see IDEA project - DAC pilot plant – CO2 from air) (sorbent regeneration using air purge at 50 °C)
- Option 2: <u>Fixed bed</u> of modified clay particles (vacuum-swing adsorption, 20 °C)

CO₂ production (sorbent regeneration)


Option 1: IER sorbent and regeneration with air purge

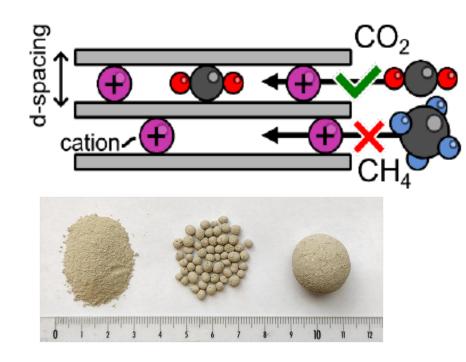
CO₂ adsorption capacity:


during adsorption from biogas: **2.5** mol/kg (at 50°C) during rinsing with air: 0.5 - 1.0 mol/kg (dep. on RH)

CH_4 adsorption capacity ≈ 0

Difference in capacity = basis for CO₂ separation

Experimental => adsorber model => process design

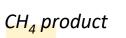

ADS-1 ADS-2 ADS-3

Steady state cyclic operation is demonstrated Temperature excursions can be limited by feed gas preheating

Option 2: modified clay sorbent

Working principle:

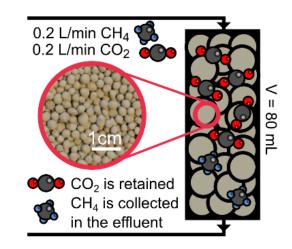
- CO₂ storage in the clay 'interlayers'
- size exclusion: CH_4/CO_2 selectivity (~25-40)

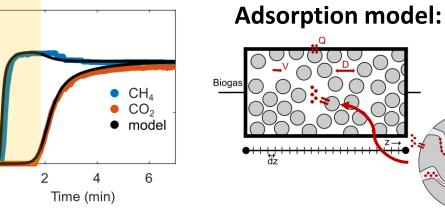


Advantages:

- Low heat of adsorption (low energy use)
- Fast adsorption / desorption
- cheap raw materials for sorbent preparation

Proof of principle – lab study + reactor model

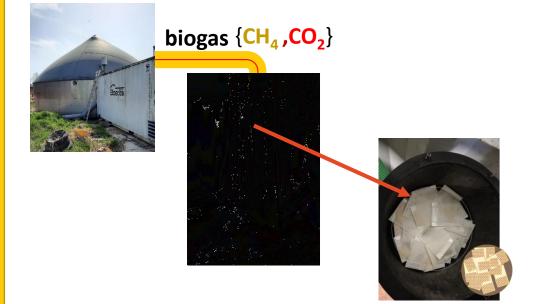

0.3


0.2

0.1

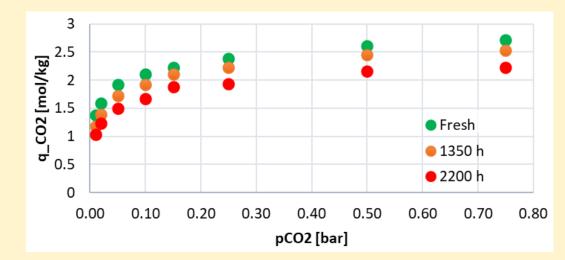
Ω

Outlet flow rate (L/min)



Model is used to design farm-scale unit Demonstration at farm scale is still needed

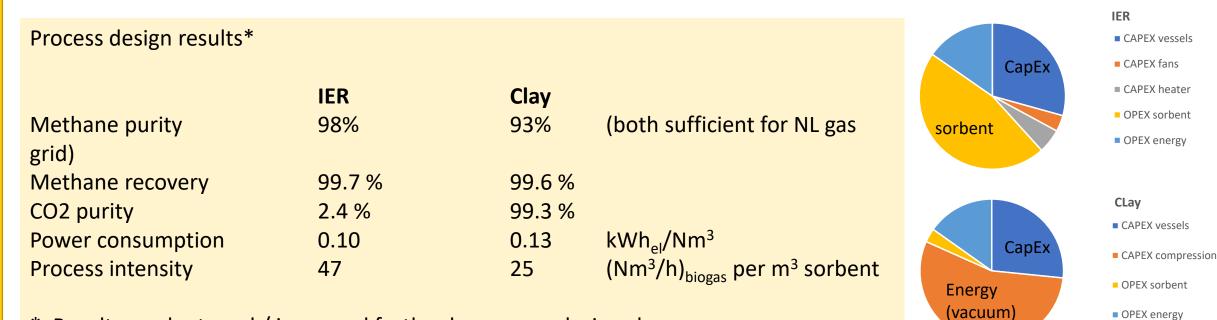
De-risking: Sorbent stability in real biogas ?



Both sorbents exposed to real biogas at Heirbaut farm

Removable lid

Sorbent samples on top carbon filter Other IER sorbent stability findings: Same sorbent was used within IDEA for DAC, and was in contact with few% O₂ at ca. 110 °C Graph below shows degradation during IDEA-DAC campaign



Sorbents (both IER and clay sorbent) did not show any degradation during experimental campaign (discontinuous exposure, stretching over 9 months)

Comparison and Conclusions



- Two robust, fixed bed technologies have designed and tested with synthetic biogas
 - (1) IER based process with air purge for regeneration
 - (2) Clay based process with vacuum swing
- Sorbents were shown to be stable, when using real biogas

* Results can be tuned / improved further by process design changes

Both processes look promising. Concept proven and conceptual design is prepared. Next steps required: outdoor piloting and detailed evaluation of business case

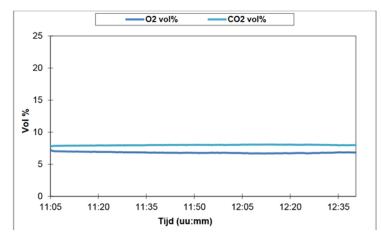
Algae growth on recycled CO₂ from biogas at larger scale

Final IDEA+ event, September 2023

Kris Heirbaut – Heirbaut Algriculture

CHP

H2O to wash flue gases: SO2, dust, volatile organic compounds, odeur,....

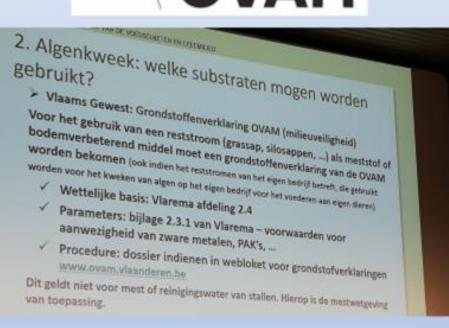

3.1 WKK

Parameter	Eenheid	Tijdstip	Gemeten waarde				
			WKK				
Datum			3/11/2021				
Atmosferische druk	Pa		100100				
Absolute druk schoorsteen	Pa		99928				
Gemiddelde temperatuur	°C	9:10 - 9:15	81				
Gemiddelde snelheid S-pitot	m.s ⁻¹	9:10 - 9:15	22,6				
Debiet (droge gassen)	Nm ³ .h ⁻¹		105				
Debiet (natte gassen)	Nm ³ .h ⁻¹		122				
Waterdampgehalte (natte gassen)	vol %		13,7				
= berekend							
Designment (Fee deserves)			Concentratie Vol %		Massadebiet		
Basissamenstelling droog rookgas		11:05 - 12:41			g/h		
O ₂			-/-				
CO ₂		11:05 - 12:41	8,0		16483		
Gasvormige polluenten			Concentratie	Concentratie	Massadebiet	Staalnummer(s)	Adsorptie-
			mg/Nm ³	omgerekend naar	g/h		middel
				15 vol% O2			
				mg/Nm ³			
со		11:05 - 12:41	850	358	89		
NOx		11:05 - 12:41	258	109	27		
SO ₂		11:05 - 12:41	40	17	4,2		
тос		11:10 - 12:40	1348	570	142		
Methaan		11:10 - 12:40	1289	545	135		

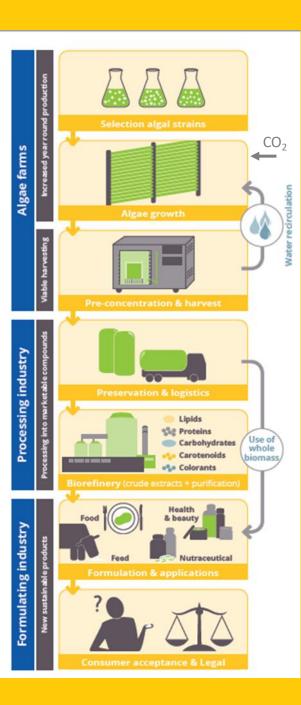
BIJLAGE I: Grafisch verloop van de continu gemeten parameters

WKK

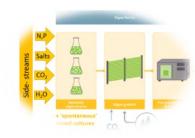
Contact time: 3 seconds


Chlorella Day 1: OD 1,00 ; pH 7,5

- OD 6 days after fertilization:
- Filtered digestate 1,70
- Filtered grass juice 1,65
- Organic CellHiBio 1,80
- CellHiBio + grass juice 1,90


- pH 6 days after fertilization
- pH 7,1
- pH 7,0
- pH 7,7
- pH 7,3

Grondstoffenverklaring SAMEN MAKEN WE MORGEN MOOIER **OVAM** A MAN DE VOCOSCIERTEN EN LETETMENT 1



Acknowledgements

This research was funded by NORTH-WEST EUROPE INTERREG, grant number NWE 639 as part of the IDEA project (Implementation and development of economic viable algae-based value chains in North-West Europe).

Website: www.nweurope.eu/idea

