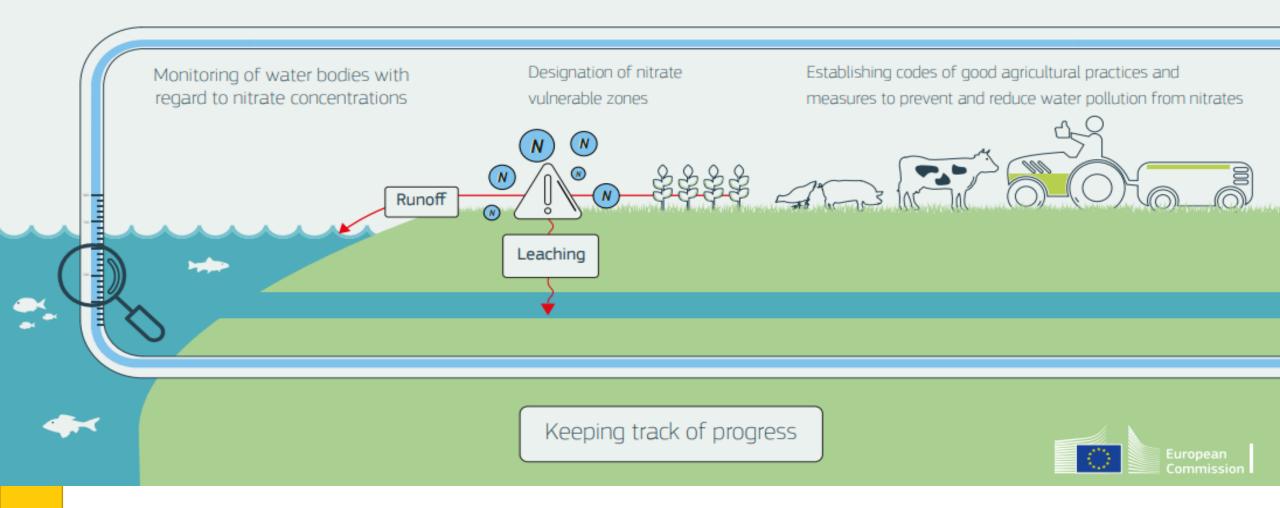


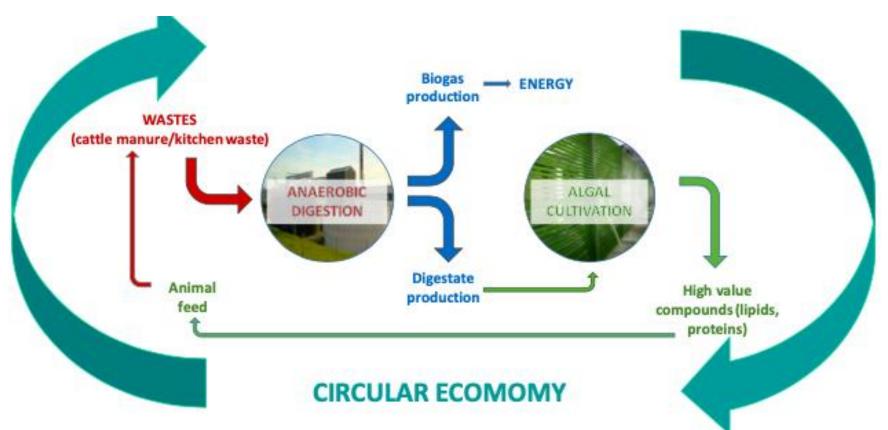
Digestate as a nutrient source for algae cultivation

Final IDEA+ event, September 2023

Alla Silkina, Mohamed Emran – Swansea university (UK)

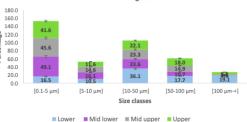

Behnam Taidi, Sufang LI - CentraleSupélec – University Paris-Saclay (France)

The EU wants to reduce water pollution caused by nitrates used in agriculture and sets out steps for EU countries to take

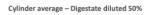

Digestate-environmental problems

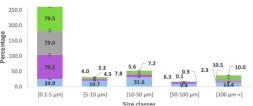
- Digestate is a by-product from the anaerobic digestion (AD) of food and farm waste, and is currently used as liquid fertiliser across Northwest Europe
- Implementation of the Nitrate Vulnerable Zones (NVZs) policy, the European Nitrate Directive 91/676/CEE, limiting the annual load of nitrogen applied onto arable land.
- AD plants are under pressure to find alternative solutions for their excess digestate, which is currently stored or buried.

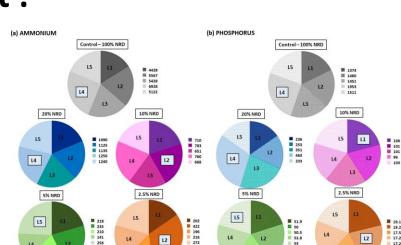
Digestate and microalgae


Pre-treatment technologies developed in Interreg ALG-AD project

Reduction of particles, contaminants and color Adjustment of the nutrients


Low cost:


- ✓ Dilution
- ✓ Settlement


Control – Raw Digestate

Medium, High cost :

- ✓ Centrifugation
- ✓ Filtration

North-West Europe

ALG-AD

Fernandes, Silkina et al, 2020 :

https://doi.org/10.1016/j.wasman.2020.08.037

Silkina et al, 2020 : https://doi.org/10.1007/s12649-019-0076

How to use the digestate for algal cultivation the west Europe

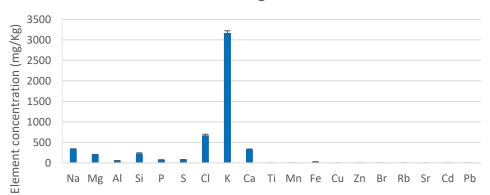
- Initial: Measurements of N, P and C ; Turbidity, pH
- Application of low or medium/high-cost pretreatment methods or combinations
- Measurements of nutrients after pre-treatment
- Dilution factor application
- Small scale adaptation of selected algal species

Pretreatment requirements of digestate for use in algae cultivation

Final IDEA+ event, September 2023

Alla Silkina, Fleuriane Fernandes, Mohamed Emran– Swansea university (UK)

Kris Heirbaut Collaboration with Heirbaut (Belgium)



Digestate sources

Analysis of **3 digestates**

	Digestate 1	Digestate 2	Digestate 3
Company/Country	Heirbaut Algriculture (BE)	Wrexham (UK)	Asgard (UK)
Feedstock	Cow manure	Broiler manure/sheep intestine content	Kitchen waste

- NH₄⁺ & PO₄³⁻
- Dry weight/Turbidity
- Elemental analysis using XRF (macronutrients N,K; metals Al, Zn, Cu and other elements)
 Heirbaut digestate

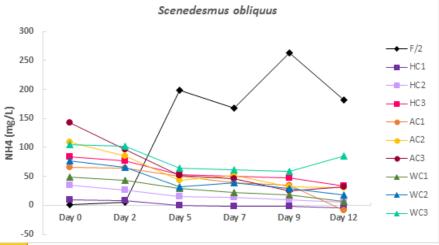
Digestate pre-treatment and composition Interreg

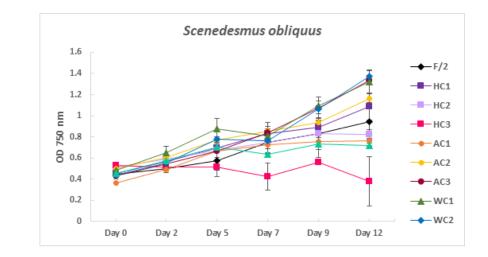
	Heirbaut	Wrexham	Asgard
NH ₄ +	797.8 ± 18.4	1786.7 ± 108	2406.2 ± 414.9
PO ₄ ³⁻	622.1 ± 8.8	660.3 ± 9.1	880.4 ± 9.8
DW	7.2 ± 0.7	24.7 ± 0.8	18.2 ± 1.2
N:P	1.3	2.7	2.7
Potential dilution required	8	18	24
Potential percentage used	12.50%	5.50%	4%

Pre-treatment of the digestate by membrane filtration 0.2um pore size

Ammonium and phosphorus analysis of digestates after membrane filtration

	Heirbaut	Wrexham	Asgard			
NH4 ⁺	102.62 ± 1.95	509.56 ± 20.57	1569.83 ± 19.69			
PO4 ³⁻	24.38 ± 0.22	45.25 ± 0.58	139.49 ± 1.38			
N:P Ratio	4.2	11.3	11.3			


REDUCTION:


- ✓ Colour
- ✓ Particles
- ✓ Adjust N & P concentration

Bioremediation small scale test



From this laboratory-scale study, it is recommended to use *Scenedesmus* for larger applications as it performed efficiently on all tested digestates.

The Heirbaut digestate is chosen to be used at the pilot facility, it is recommended to use up to 5% - 50 mg/L of ammonium concentration of the treated digestate in pilot scale studies.

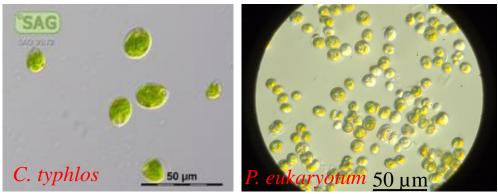
Establishing growth conditions for algal growth on pre-treated digestate

Final IDEA+ event, 28 September 2023

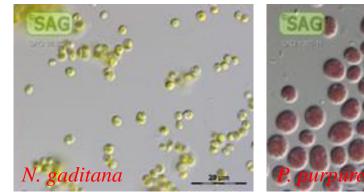
Sufang Ll¹, Leen BASTIAENS² & Behnam TAIDI¹

¹ LGPM, CentraleSupélec – University Paris-Saclay, France

²VITO, Susutainable chemistry department, Boeretang 200, 2400 Mol, Belgium

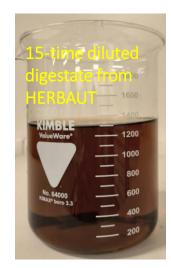


Aims



Determine the possibility of pre-treated digestates as nutrients source for microalgae growth and subsequently identify their optimal nutritional conditions

- Anaerobic digestion effluents (3 digestates, from feedstocks)
- Species:
 - Chloromonas typhlos
 - Picochlorum eukaryotum (Wild population, isolated from open pond)
 - Nannochloropsis gaditana
 - Porphyridium purpureum


Marine algae

Potentials and barriers of digestates for algal cultivation

Table 1: Overview of tested digestates before the experiment											
Digestate	Code		Dilution before experiments	рН		N-NO ₃ ⁻ Concentration (mg L ⁻¹)	P-PO ₄ ³⁻ Concentration (mg L ⁻¹)				
D1	SU-D-1-CS from ASGEARD	Kitchen waste	No dilution	8.51	2033.7 ± 12.4	10.6 ± 0.9	42.7 ± 0.7				
D2	SU-D-1-CS from WREXHAM	Broiler manure/sheep intestine content	1:3	8.24	376.3 ± 1.8	11.5 ± 4.8	2.8 ± 0.2				
D3	SU-D-1-CS from HERBAUT	Cow manure feedstock	1:5	7.98	137.2 ± 0.5	101.9 ± 4.8	9.4 ± 0.5				

Three digestates could be used for feeding microalgae due to their contents of nitrogen and phosphorus.

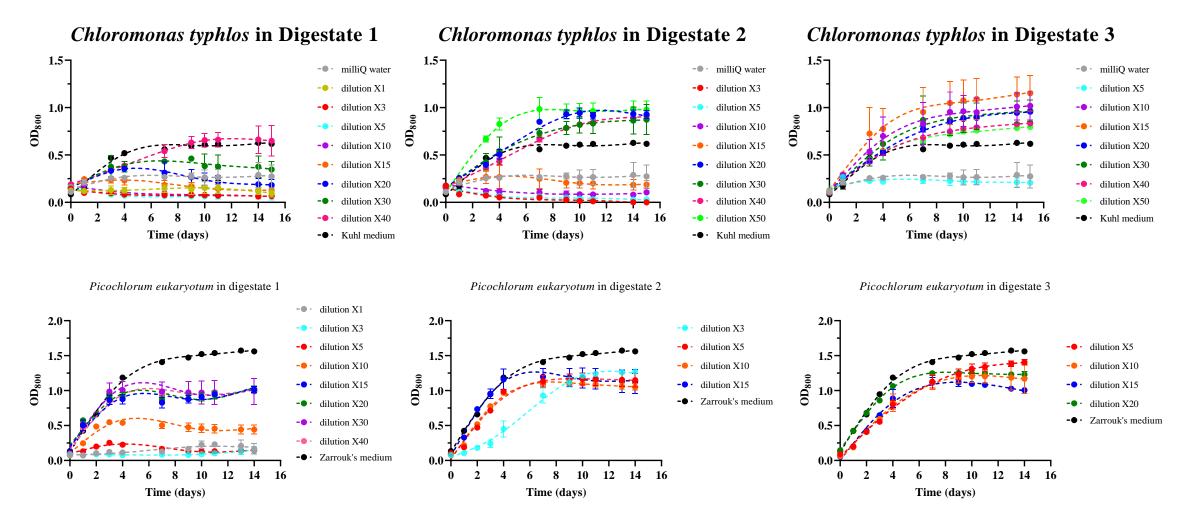
Main barriers:

- L. high turbidity (dark brown color), affecting light availability for algal cells;
- 2. High NH_4 + concentration, toxic to cells

Optimize dilution rate

Experimental setup

Table 2: Nitrogen and phosphorus concentrations of digestates under different dilution rates before the experiment


1.000

				CCMP	belore tr	ne experimen	l				٥r	reg 🛄	
Digestate		D1 (from A	SGEARD)		C	02 (from \	WREXHAM	D3	est Europe				
	N-NH ₄ ⁺	N-NO ₃ -	P-PO4 ³⁻	N:P molar	$N-NH_4^+$	N-NO ₃ -	P-PO43-	N:P molar	N-NH ₄ ⁺	N-NO ₃ -	P-PO4 ³⁻	N:P	
	Concentratio n (mg L ⁻¹)	Concentration (mg L ⁻¹)	Concentration (mg L ⁻¹)	ratio	Concentration (mg L ⁻¹)	Concentration (mg L ⁻¹)	Concentratio n (mg L ⁻¹)	ratio	Concentration (mg L ⁻¹)	Concentration (mg L ⁻¹)	Concentratior (mg L ⁻¹)	nmolar ratio	
		(118 - 7	(118 - 7		(118 -)	(8 -)	" ("BL /		(118 -)	((118-)	latio	
Dilution													Growth condition:
rate													25° C , 120 rpm,
												-	· · ·
1	2033.7 ± 12.4	10.6 ± 0.9	42.7 ± 0.7		-	-	-	-	-	-	-		2.0% CO ₂ (v/v),
3	677.9 ± 4.1	3.5 ± 0.3	14.2 ± 0.2		376.3 ± 1.8	11.5 ± 4.8	2.8 ± 0.2		-	-	-	-	Continuous light: 35
5	406.7 ± 2.5	2.1 ± 0.2	8.5 ± 0.1		225.8 ± 1.1	6.9 ± 2.9	1.7 ± 0.1		137.2 ± 0.5	101.9 ± 4.5	9.4 ± 0.5		μ mol photons m ⁻² s ⁻¹ .
10	203.4 ± 1.2	1.1 ± 0.1	4.3 ± 0.0		112.9 ± 0.5	3.4 ± 1.4	0.8 ± 0.1		68.6 ± 0.3	51.0 ± 2.2	4.7 ± 0.2		
15	135.6 ± 0.8	0.7 ± 0.1	2.8 ± 0.0		75.3 ± 0.4	2.3 ± 1.0	0.6 ± 0.0		45.7 ± 0.2	34.0 ± 1.5	3.1±0.2		Note: for marine
20	101.7 ± 0.6	0.5 ± 0.0	2.1 ± 0.0		56.4 ± 0.3	1.7 ± 0.7	0.4 ± 0.0		34.3 ± 0.1	25.5 ± 1.1	2.4 ± 0.1		algae, NaCl was
30	67.8 ± 0.4	0.4 ± 0.0	1.4 ± 0.0		37.6 ± 0.2	1.1 ± 0.5	0.3 ± 0.0		22.9 ± 0.1	17.0 ± 0.7	1.6 ± 0.1		added to maintain
40	50.8 ± 0.3	0.3 ± 0.0	1.1 ± 0.0		28.2 ± 0.1	0.9 ± 0.4	0.2 ± 0.0		17.2 ± 0.1	12.7 ± 0.6	1.2 ± 0.1		cellular osmotic
50	40.7 ± 0.2	0.2 ± 0.0	0.9 ± 0.0		22.6 ± 0.1	0.7 ± 0.3	0.2 ± 0.0		13.7 ± 0.1	10.2 ± 0.4	0.9 ± 0.0		equilibrium.
60	33.9 ± 0.2	0.2 ± 0.0	0.7 ± 0.0	106	18.8 ± 0.1	0.6 ± 0.2	0.1 ± 0.0	307	11.4 ± 0.0	8.5 ± 0.4	0.8 ± 0.0	56	
							A P.P 019800000000000000000000000000000000000		9 10 11 12 Creechido / 6				

Figure 1. Illustration of algae growth trials performed in 96-well microplates (cultures for *Chloromonas typhos*, a; *Nannochloropsis Gaditana*, b; *Porphyridium purpureum*, c; and wild algae consortium, d).

Growth characteristics of microalgae under different dilution rates- **freshwater algae**

Growth characteristics of microalgae under different dilution rates- **freshwater algae**

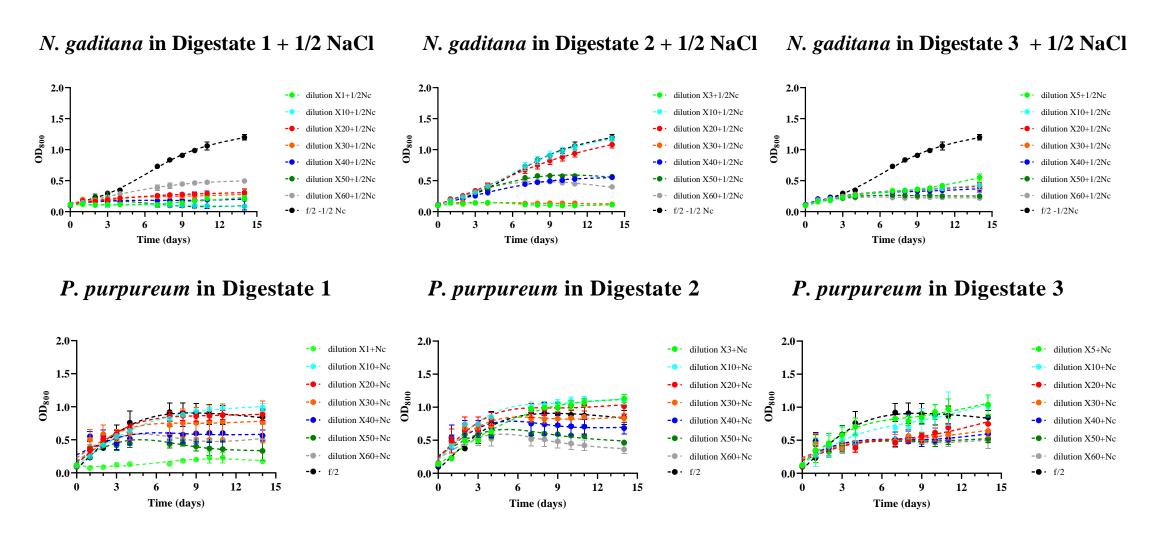

Table 3: Growth date of *Chloromonas Typhlos* in differerent digestates dilutions.

Table 4: Growth date of *Picochlorum eukaryotum* in differerent digestates dilutions.

	Digestate 1		Digestate 2		Digestate 3			Digestate 1		Digestate 2		Digestate 3	
Dilution times	Max OD ₈₀₀	μ (d ⁻¹)	Max OD ₈₀₀	μ (d ⁻¹)	Max OD ₈₀₀	μ (d ⁻¹)	Dilution times	Max OD ₈₀₀	μ (d ⁻¹)	Max OD ₈₀₀	μ (d ⁻¹)	Max OD ₈₀₀	,μ (d-1)
dilution X1	0.156	-					dilution X1	0.231	-	-	-	-	-
dilution X3	0.145	-	0.177	-			dilution X3	0.148	-	1.271	0.44	-	-
dilution X5	0.158	-	0.179	-	0.267	-	dilution X5	0.253	-	1.168	0.30	1.407	0.444
dilution X10	0.184	-	0.202	-	1.018	0.434	dilution X10	0.548	-	1.106	0.19	1.204	0.482
dilution X15	0.244	-	0.269	0.117	1.152	0.455	dilution X15	1.017	0.198	1.198	0.15	1.114	0.49
dilution X20	0.354	0.134	0.944	0.222	0.957	0.351	dilution X20	1.015	0.167	-	-	1.255	0.30
dilution X30	0.462	0.133	0.874	0.292	0.967	0.413	dilution X30	1.008	0.231	-	-	-	-
dilution X40	0.663	0.178	0.912	0.201	0.835	0.387	dilution X40	0.997	0.24	_	_	_	-
dilution X50	-	-	0.985	0.443	0.796	0.382	Zarrouk's						
Kuhl medium	0.628	0.558					medium	1.573	0.30				

Growth characteristics of microalgae under different dilution rates- marine algae

Growth characteristics of microalgae under different dilution rates- marine algae

Table 5: Growth date of *N. Gaditana* in differerent digestates dilutions.

Table 6: Growth date of *P. purpureum* in differerent digestates dilutions.

Dilution times	Digestate 1		Digestate 2		Digestate 3			Digestate 1		Digestate 2		Digestate 3	
	Max OD ₈₀₀	μ (d ⁻¹)	Max OD ₈₀₀	μ (d⁻¹)	Max OD ₈₀₀	μ (d⁻¹)	Dilution times		u(d-1)	Max	μ (d ⁻¹)	Max OD ₈₀₀	$u(d^{-1})$
dilution X1	0.217	-	-	-	-	-		Max OD ₈₀₀	μ(u)	OD ₈₀₀	μ(υ)		μuj
dilution X3	-	-	0.148	-	-	-	dilution X1	0.230	-	-	-	-	-
dilution X5	-	-	-	-	0.551	0.12	dilution X3	-	-	1.130	0.37	-	-
dilution X10	0.146	-	1.178	0.18	0.424	0.08	dilution X5	-	-	-	-	1.039	0.24
dilution X20	0.308	-	1.083	0.18	0.407	0.08	dilution X10	0.989	0.24	1.113	0.22	1.005	0.25
dilution X30	0.277	-	0.190	-	0.419	0.08	dilution X20	0.885	0.22	1.032	0.16	0.748	-
dilution X40	0.198	-	0.552	0.11	0.369	0.06	dilution X30	0.774	-	0.854	0.12	0.641	-
dilution X50	0.206	-	0.579	0.15	0.265	0.03	dilution X40	0.605	-	0.753	0.07	0.602	-
dilution X60	0.494	0.1	0.495	0.15	0.233	-	dilution X50	0.449	-	0.599	-	0.522	-
f/2 medium	_						dilution X60	0.526	-	0.521	-	0.494	-
1/2Nacl	1.199	0.19					f/2 medium	0.920	0.24				

- 3 digestates could be used for algal growth, and 4 microalgae showed species-specific growth performances in digestates (even under the same dilutions);
- *C. typhlos* appears to be a low-ammonium tolerant strain, while the wastewater-born alga, *Picochlorum eukaryotum*, can grow in digestates with highest NH₄⁺ concentration;
- High amount of nitrate present in digestate 3 (from HERBAUT) might alleviate the toxicity of excess NH₄⁺ conditions to microalgae;
- Digestates could be adopted for marine algae cultivation, but extra salt should be added in the medium or these species could be cultured at sites situated near the sea.

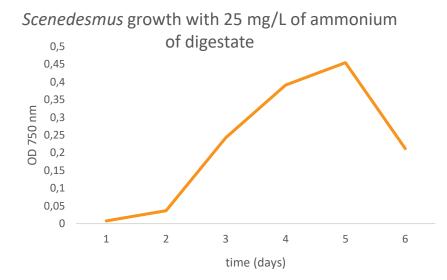


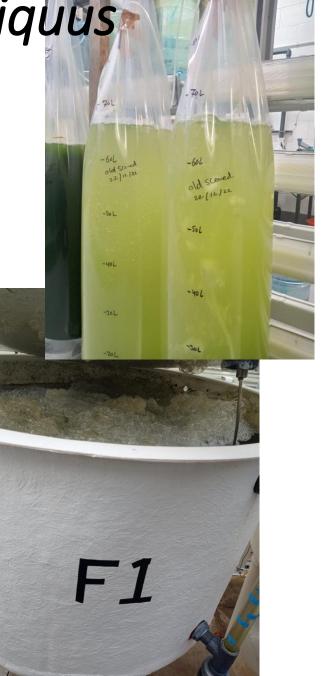
Pilot scale growth of Scenedesmus on pretreated digestate

Final IDEA+ event, September 2023

Alla Silkina, Mohamed Emran, Fleuriane Fernandes – Swansea University (UK)

Leen Bastian, Quennie Simons Collaboration with VITO (Belgium)

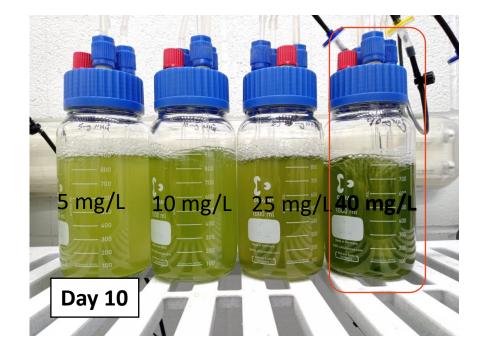

Pilot scale growth



- Testing the waste remediation in small scale (1L) and cultivation in batch conditions
- Scenedesmus obliquus is a model species
- Identification of optimum waste concentration for bioremediation and biomass production
- The most suitable digestate for PBR -1,000L cultivation- semi continuous
- Cultivation Janury–May 2023 in greenhouse PBR with natural light conditions
- Assessment of abiotic parameters: pH, T ^oC and light
- Biotic parameters : cell density, dry weight, nutrients uptake

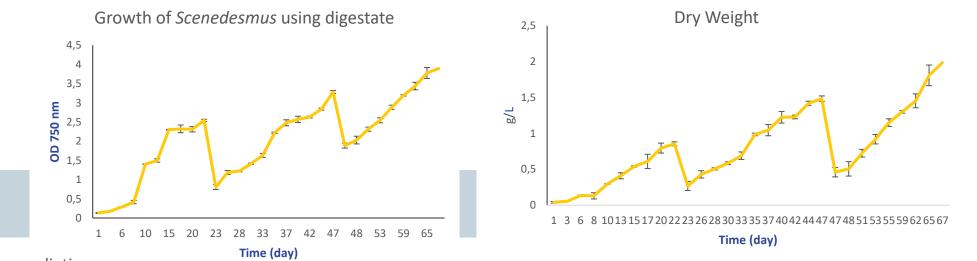
Initial Scenedesmus obliquus cultivation

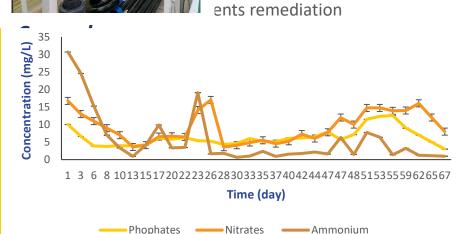




North-West Europe DEA Ergeen Regional Development Fund

Back to the laboratory scale for the North-West Europe digestate growth and culture acclimation





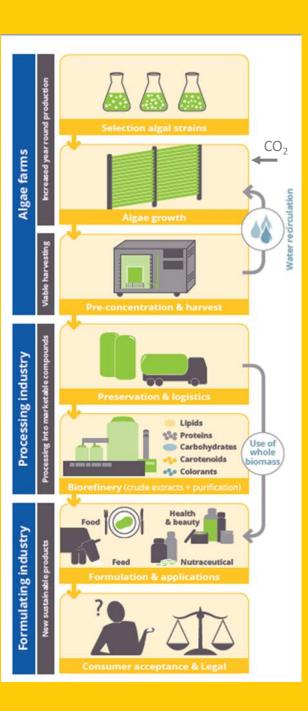
10 days of the *Scenedesmus obluquus* growth at Lab scale of 1 L of cultivation Initial inoculum 10%

High scale remediation and culture growth

- Acclimation and efficient remediation of waste nutrients
- Using 30-40 mg/L of waste ammonium concentration (100L of non-dulited digestate was used)
- Production of 5 kg of dry weight of Scenedesmus biomass
- Data collection for modelling

Biomass production

- Several batches of concentrated biomass was produced January-May 2023
- High viscosity of biomass
- High concentration of Exopolysacharides (EPS)



Best practice and takehome message

- Measurements of N, P and C ; Turbidity, pH of digestate
- Pretreatment using low or/and medium/high-cost methods is essential,
- Right selection of algal species
- Testing at the lab scale and acclimation of the culture
- Gradual scale up and close monitoring of the growth parameters and nutrients uptake
- Longer duration and frequent supply of the waste nutrients give better results of biomass production

Acknowledgements

This work was performed in close association with **VITO, Heirbaut algriculture, Swansea University** who prepared the digestate samples and shared their methodology, the **suppliers of the digestates** and **VITO** who coordinated the scientific work.

This research was funded by NORTH-WEST EUROPE INTERREG, grant number NWE 639 as part of the IDEA project (Implementation and development of economic viable algae-based value chains in North-West Europe).

Website: www.nweurope.eu/idea

Full partners:

