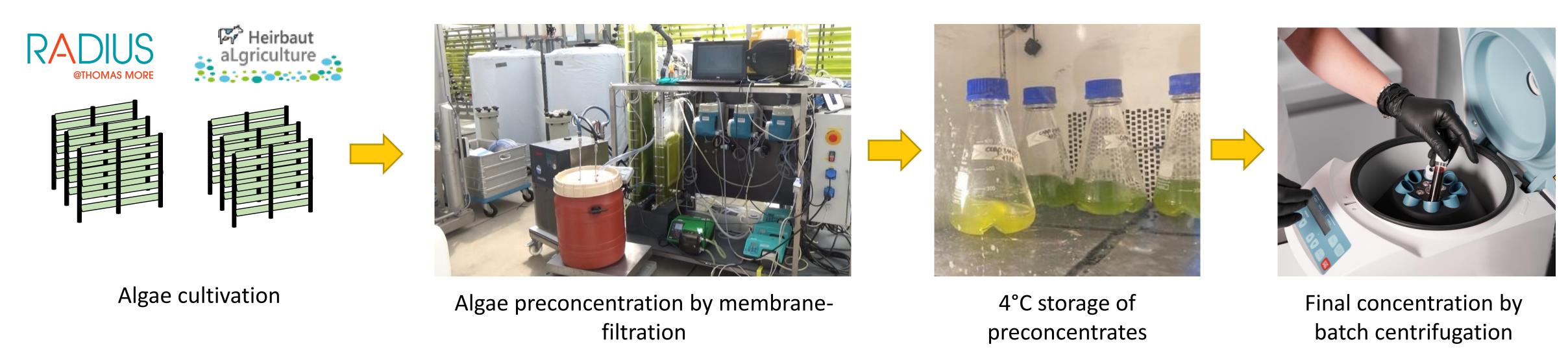


WET PRESERVATION OF ALGAE CONCENTRATES OBTAINED BY MEMBRANE FILTRATION

Verspreet J.¹, Van Roy S.¹, Schoeters F.², Heirbaut K.³ and L. Bastiaens¹

- ¹ VITO, Conversion and Separation Technologies department, Boeretang 200, 2400 Mol, Belgium, <u>leen.bastiaens@vito.be</u>
- ² Thomas More, Radius, Kleinhoefstraat 4, 2440 Geel, Belgium
- ³ Heirbaut Algriculture, Veldstraat 218, 9140 Temse, Belgium

Introduction


Wet preservation of algae allows bridging the time period between algae harvest and processing. A new preservation approach is presented: First, algae are preconcentrated by membrane filtration to obtain so-called preconcentrates. Next, preconcentrates are stored at 4°C and finally centrifuged to obtain a final concentrate ready for processing.

Aim

This study aimed to evaluate organic matter and lipid losses during the storage of preconcentrates obtained by membrane filtration.

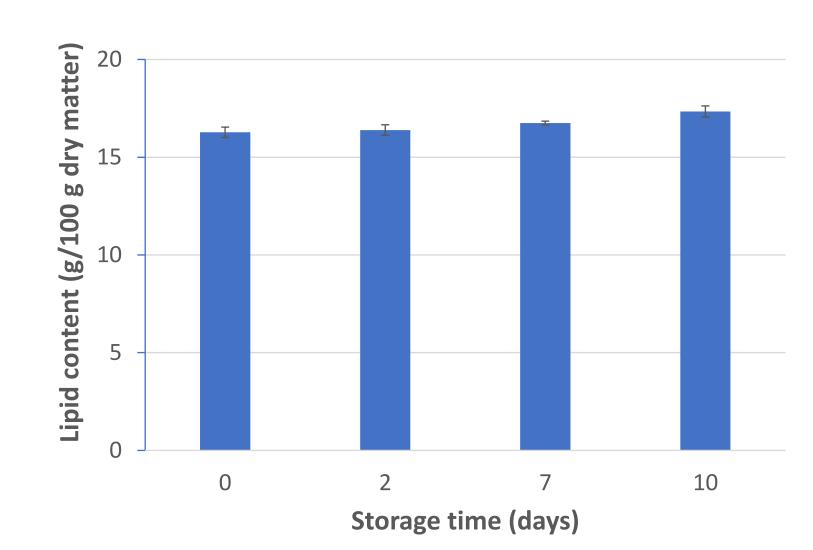
Materials & methods

Nannochloropsis gaditana and Chlorella sp. were grown in tubular photobioreactors at Sunbuilt (Thomas More/VITO) and Heirbaut Algriculture, respectively. Algae were concentrated by low-shear membrane filtration using VITO's membrane algae filtration technology (MAF). The obtained preconcentrates (3 L) were stored at 4°C with orbital shaking and a perforated lid enabling gas exchange with the environment. Samples were taken at regular time intervals and concentrated by batch centrifugation (10 min, 15,000g).

Results

Storage of *Nannochloropsis* preconcentrates

• The initial *N. gaditana* preconcentrates had a dry matter and organic matter content of $2.44 \pm 0.01\%$ and $1.55 \pm 0.01\%$, respectively. The organic matter level of the preconcentrates remained rather stable or decreased only slightly as $95.7 \pm 0.1\%$ of the t_0 value was retained after 10 days of storage (column 2, table below).


Storage time (days)	Organic matter retained (% t ₀ level)	Relative centrifugation yield (% t ₀ yield)	O ₂ (mg/L)
0	100.0 ± 2.6	100.0 ± 1.6%	not measured
2	91.2 ± 3.5%	93.9 ± 3.4%	0.9 ± 0.1
7	94.6 ± 6.2%	91.4 ± 1.4%	0.2 ± 0.1
10	95.7 ± 0.1%	99.4 ± 6.7%	0.1 ± 0.0

- When stored preconcentrates were centrifuged, the centrifugation yield was also rather stable (column 3, table above).
- Lipids levels did not change significantly (P=0.12) between the start of the test (16.19 \pm 0.70 g lipids/100 g dry matter) and day 10 (14.91 \pm 0.1 g lipids/100 g dry matter).

Storage of *Chlorella* preconcentrates

The initial *Chlorella* preconcentrates had a dry matter and organic matter content of $2.83 \pm 0.01\%$ and $2.56 \pm 0.01\%$, respectively. The organic matter level of the preconcentrates decreased slightly (column 2, table below). When stored preconcentrates were centrifuged, the centrifugation yield decreased slightly during storage (column 3, table below).

Storage time	Organic matter retained	Relative centrifugation yield	
(days)	(% t ₀ level)	(% t ₀ yield)	O ₂ (mg/L)
0	100.9 ± 1.2%	100.0% ± 1.5%	0.15 ± 0.07
2	95.6 ± 1.7%	100.7% ± 2.7%	0.15 ± 0.07
7	91.3 ± 0.7%	95.7% ± 2.0%	3.9 ± 0.35
10	91.1 ± 1.5%	93.0% ± 1.8%	7 ± 0.28

The lipids levels of the obtained centrifugation pellets remained rather constant (*cfr.* Figure to the left).

Conclusions

Membrane filtration of algae followed by cooled storage is a promising approach for temporary algae storage. Algae volumes that require cooling and centrifugation are minimal. Organic matter losses are limited and lipid levels remain stable during storage.

