

CULTIVATION OF CHLOROMONAS ON MEDIUM & REGENERATION WATER FROM A DEMINERALISATION UNIT: IMPACT ON ALGAE BIOMASS

Van Roy, S.¹, Q. Simons¹, J. Verspreet¹, P. De rechter¹, F. Schoeters² & L. Bastiaens¹

1 VITO, Conversion and Separation Technologies department, Boeretang 200, 2400 Mol, Belgium. <u>leen.bastiaens@vito.be</u> 2 Thomas More, Radius, Kleinhoefstraat, Geel, Belgium.

Introduction & aim

- Algae biomass cultivation is a process that requires water and nitrogen, besides other nutrients like (P, Fe, Zn, etc.), CO₂ and light.
- Aim of the study = to evaluate the possibility of growing Chloromonas typhlos as a unialgal strain on (MAF-permeate of) Ncontaining regeneration water from a demineralization unit.

Characteristics of process water

- The process water had a low organic carbon content (< 0.9%, w/v), an elevated salt level (EC 9-11 mS/cm) and contained nitrogen (up to 50 mg N/L), mainly present as nitrate.
- Lab-scale and longer-term pilot-scale trials were performed.

Conclusions

- Chloromonas cultivation in permeate of N-rich process water showed occurrence of stressed algae in different ways:
 - During MAF harvesting: foam formation & formation of lipid-like globules were observed (Fig. 1) causing flux reductions,
 - Less efficient harvesting via centrifugation
 - Different cell morphologies lipids globules in the cell (Fig. 2)
- Lipid levels for algae grown on permeate-based medium tended to be slightly higher than those grown on regular medium, but differences were small. Possibly, lipids were released in the medium and got lost via the centrate.
- The accumulation of lipids in *Chloromonas* biomass might be caused by stress like exposure to high salt concentrations (Hounslaw et al., 2016 & Bazzani et al., 2021).
- Further research is required to unravel the biochemical processes and link them to the biomass composition.

- The composition of the process water before and after MAFfiltration is given in Table 1.
- The concentration of Ca, Cu, Mn, Sr and Zn in the process water and permeate is much higher compared to normal medium while Mg, P and S is much higher in regular medium.
- Most elements pass the membrane during filtration, only a few elements like iron are retained.
- The electric conductivity of the process water is higher compared to that of the regular medium (Table 2).

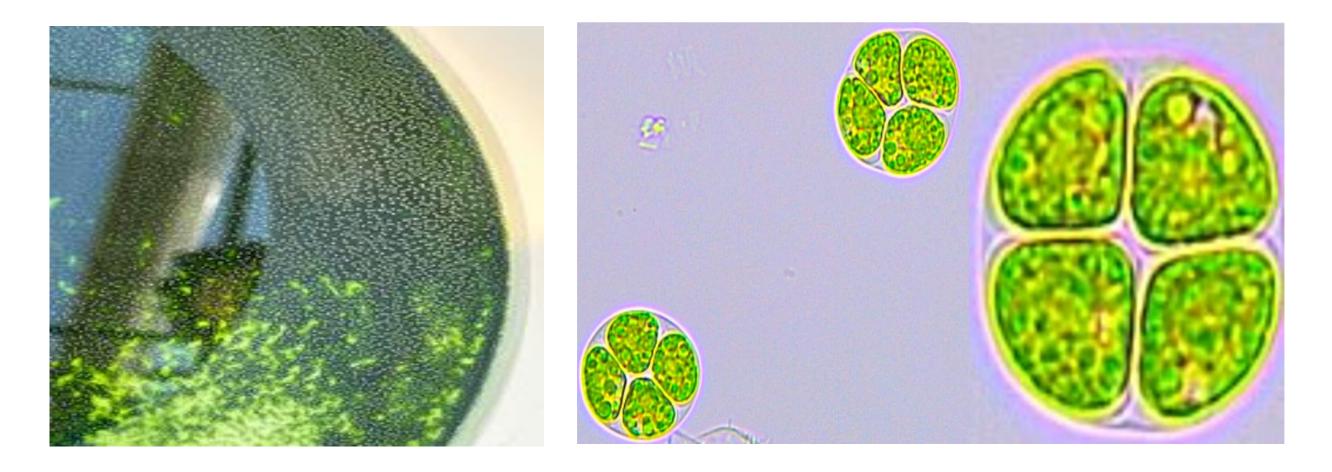


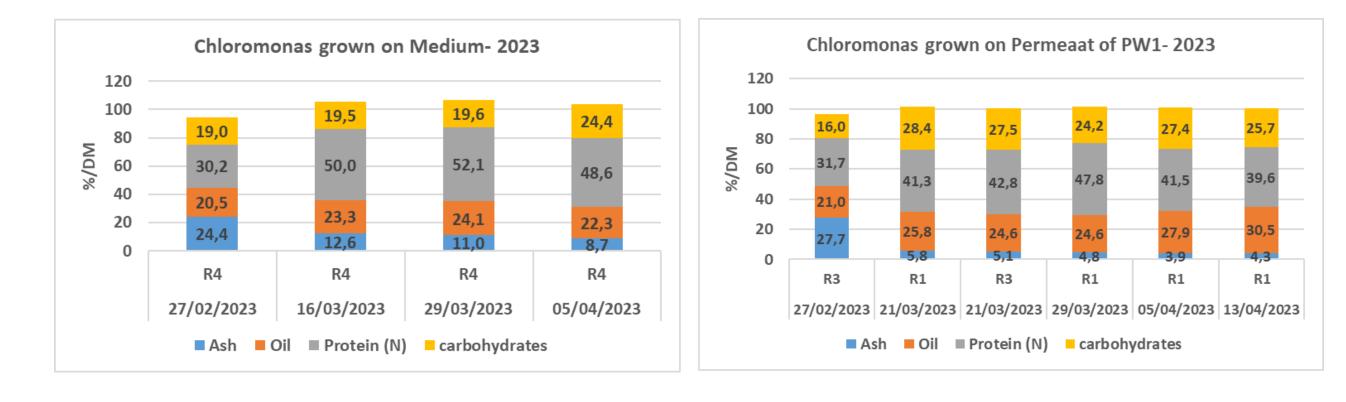
Figure 1: MAF concentrate with lipid-like globules.

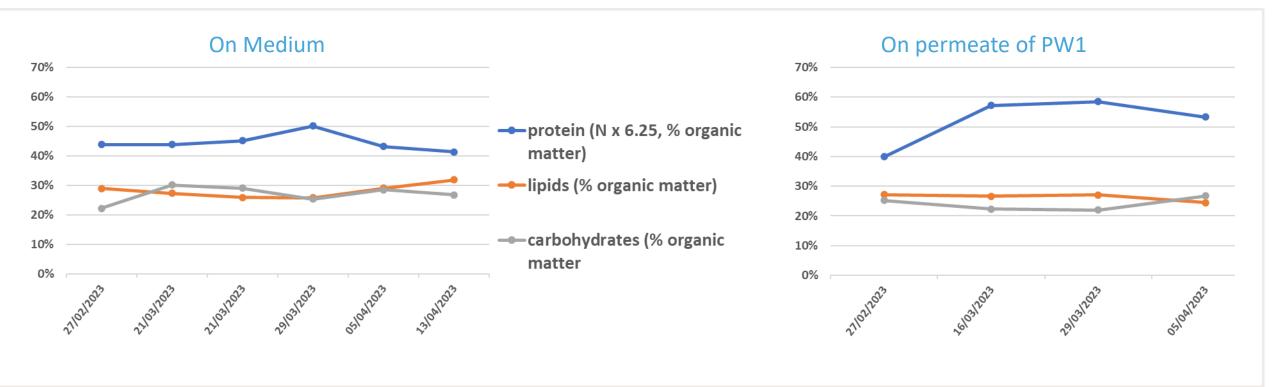
Figure 2: Lipid globules (circles inside the cell) visible in *Chloromonas* grown in permeate of process water.

Table 1: Comparison of the Normal Growth medium, process water (= regeneration water) and MAF-permeate of the process water.

	μg/L												
	Са	Со	Cu	Fe	к	Mg	Mn	Мо	Sb	Sr	Zn	Р	S
medium TM	113755	NA	1.07E-05	188.40	86394	310565	2.62	2.01	NA	NA	1.12	3413	411049
process water	616000	<5	17	290	75000	50000	5,2	20	<10	2200	15	<75	150000
permeate of process water	603000	<5	10	11	67000	48000	14	17	<10	2000	67	<75	150000

Impact on algae harvesting


- In February 2021, Chloromonas grown on normal medium was harvested successfully for 1 month using the membrane-based MAF-technology (= continuous harvesting), with medium recycling.
- In November 2022, drastically reduced fluxes were observed during MAF-harvesting of *Chloromonas* grown on the permeate of N-rich process water. The appearance of the culture was very different, with large lipid-like globules in the MAF concentrate (Fig. 1) and excessive foaming, possibly caused by cell lysis.
- Microscopy analysis revealed a different cell morphology: intense cell division and large intracellular globules, possibly lipid globules (Fig. 2).
- In February 2023, the cultivation of Chloromonas on normal


Table 2: Electric conductivity and pH of the Chloromanas culture during cultivation in MAF- permeate of theprocess water and in normal medium.

date	1500 L PBR permea	te process water	300L PBR permeat	e process water	300L PBR normal medium		
	conductivity (ms/cm)	рН	conductivity (ms/cm)	рН	conductivity (ms/cm)	рН	
27/02/2023	empty	empty	9.83	7.95	1.975	8.25	
29/03/2023	9.64	7.106	10.97	7.581	1.131	7.736	
05/04/2023	8.72	7.252	11.02	8.01	0.927	8.13	
13/04/2023	9.15	7.144	9.75	7.363	-	-	

Impact on algae biomass composition

The lipid level of algae grown on medium and on process water was determined for multiple harvests.

medium and on permeate of N-rich process water was compared. Again, MAF membranes clogged for *Chloromonas* grown on permeate, while harvest for algae grown on normal medium was successful. When the permeate-based culture was centrifuged, relatively low biomass amounts were observed in the pellet.

References: Hounslaw et al., 2016 (Thesis submitted for the degree of Doctor of Philosophy) & Bazzani et al., 2021 (doi.org/10.3390/jmse9111242)

Figure 3: Chemical composition of *Chloromonas* biomass. Upper graphs: Proximate analyses on dry matter basis, where slightly increased lipid concentrations were observed for *Chloromonas* grown on permeate of the process water. Lower graphs: this increase in lipid concentration is less pronounced when plotting data on organic matter basis.

