

DEWATERING AND DESALTING OF DIFFERENT ALGAE SPECIES USING SUBMERGED MEMBRANES (MAF-TECHNOLOGY)

Van Roy S., H. Sterckx, F. Vanhoof, Q. Simons and L. Bastiaens

VITO, Conversion and Separation Technologies department, Boeretang 200, 2400 Mol, Belgium. <u>leen.bastiaens@vito.be</u>

Introduction

- Micro-algae offer potential for a biobased economy. \bullet
- Harvesting = dewatering
- Harvested micro-algae can contain significant amounts of salts \bullet

Conclusions

- The MAF technology proved to be suitable for dewatering (concentrating) a variety of microalgae species.
- Nannochloropsis, Chloromonas typhlos, Chlorella sp.,

- Membrane technology can be used for lacksquare
 - Pre-harvesting activities removing > 95% of the water
 - Medium recycling
 - Desalting of harvested algae

Aim of the study = Evaluating the potential of the VITO MAFtechnology for different microalgae species via off-site filtration tests.

MAF-technology

- MAF = Membrane based Algae Filtration
 - Submerged membranes (UF & MF)
 - Backwashable membranes
 - Permeate recovery via under pressure \bullet \rightarrow Low shear technology
- Algae densities reached: > 40 g/L OM \bullet

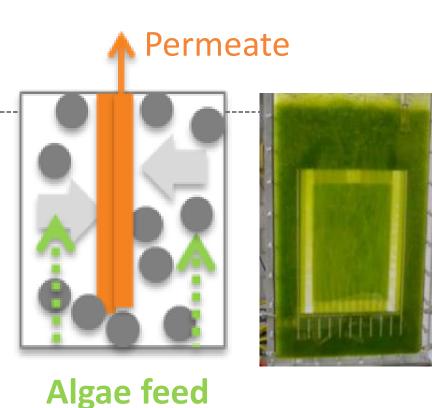


Figure 1: Submerged membrane filtration.

Scenedesmus sp. and Pavlova sp. were concentrated successfully with volume concentration factors up to 50 and more.

- Due to low shear forces \rightarrow also fragile cells without cell wall like *Rhodomonas* sp. can be concentrated.
- Algae densities of 30 to >100 g OM/L were reached.
- Filtration fluxes were found to be impacted negatively by 1) extracellular polymeric substances (EPS) like produced by *Porphyridium sp.* and 2) impurities and cell debris.
- A transparent cell-free permeate containing >99% of the salts was generated \rightarrow suitable for recirculation.
- The MAF-technology was also found very useful for desalting the preconcentrated algae biomass \rightarrow for instance required when targeting feed applications.
- Longer-term continuous operations are ongoing

Table 1: Summary of MAF-performance for pre-concentrating and desalting of different micro-algae species as determined via screening test using 50-300 L algae culture.

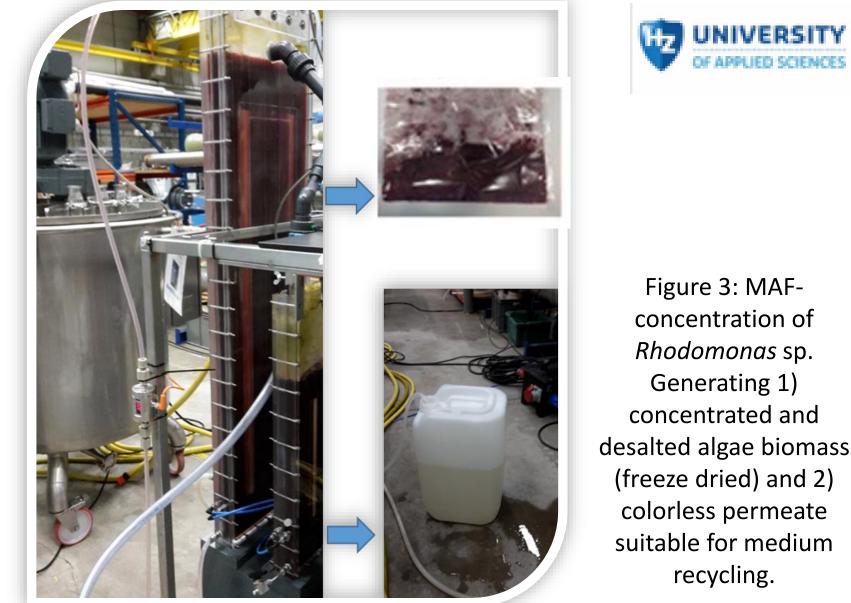
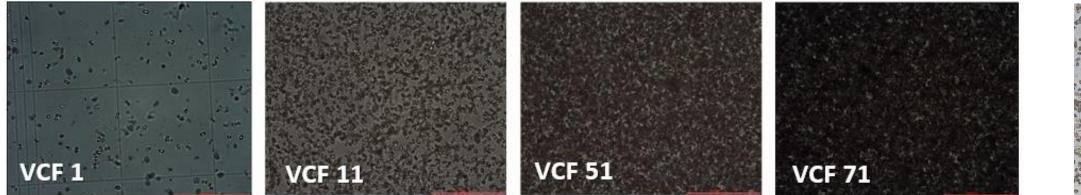

Algae species		Pre-concentration of algae	Fluxes	Desalting after pre- concentration	Remarks
Nannochloropsis gaditana *		1 g/L → >100 g OM/L (VCF > 100)	+++	23.3 → 0.3 mS/cm	Tested extensively at lab & pilot scale
Chloromonas Typhlos *	*.	0.92 g/L → >20.7 g OM/L (VCF = 42)	+++	Not relevant (fresh water culture)	When algae are stressed, oily layers reduce fluxes
Porphyridium purpureum *		0,7 → 1,5 g DM/L (VCF = 2-3)	-	Not applicable due to low fluxes	Negative impact of EPS on fluxes
Chlorella sp. **		1 g/L →18 - >50 g OM/L	++	Suitable when grown in brackish water	Foaming observed
Scenedesmus sp. **		< 1g/L → >31 g OM/L (VCF = 80)	+++	Not relevant (fresh water culture)	
<i>Rhodomonas</i> sp. ***	0	0,07-0,5 → >10 g OM/L (VCF > 100)	+++	42 → 1 to 2,7 mS/cm	Very fragile algae species without cell wall
Pavlova sp. ****		1 → >33 Mcells/ml (VCF 34-40)	++	50,2 → 1,1 to 0,6 mS/cm	
Mixed Algae from open pond ^{\$}		0.09 → 20 g OM/L (VCF 50 to > 200)	+++	13,4 → 3,7 mS/cm	
Spirulina ^{\$\$}		3 → 28 g OM/I (VCF 10)	++	10,4 -→ 3,0 mS/cm	

Figure 2: MAF screening units with 0,2-1,1 m^2 membrane surface.


Algae biomass cultivated (*) in Sunbuilt (Thomas More & VITO, Belgium), (**) Forschungszentrum Jülich, Germany, (***) Hogeschool Zeeland, NL, (****) University Lille, France. OM = dry organic mater Mixed algae biomass from open pond operated with regeneration water from a demineralization unit – Yara Sluiskil (\$); Spirulina grown in closed PBRs by Lgem (\$\$).

Concentration and desalting of microalgae without cell wall

Rhodomonas sp. are fragile algae species without a cell wall that are very sensitive to shear forces. Cell integrity of *Rhodomonas* was monitored during dewatering and desalting via the MAF-technology. Microscopic analyses and visual observation of the permeate color proved that the cells remained intact. Non-stressed cultures performed

better than stressed cultures.

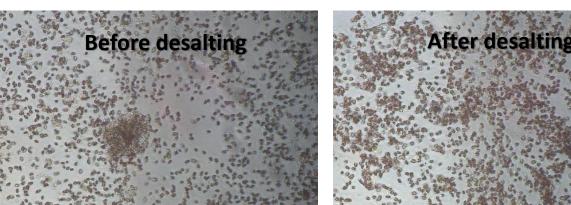


Figure 3: Microscopic analyses of *Rhodomonas* cells during concentration by MAF till VCF > 71 (LEFT) and before and after desalting (RIGHT).

concentration of Rhodomonas sp. concentrated and desalted algae biomass (freeze dried) and 2) colorless permeate suitable for medium

