

Fleet Handbook Preparing for a Trial Deployment of Hydrogen Fuel Cell Waste Trucks

Fergus Worthy

Deputy Head of Transport

✓ @CenexLCFC

Development and Aims of Fleet Handbook

Review of existing handbook:

- Cover key points of relevance to fleets
- Include learnings from HECTOR partners
- Clarity of style and presentation

Knowledge

Aim of Handbook:

Energy Infrastructure

Transport

• *"to help fleet operators to specify, procure and deploy their first fuel cell waste trucks"*

Updated Handbook Structure

Knowledge & Enterprise

Energy Infrastructure

Transport

Content Summary

1. Planning

>Analyse vehicle requirements, operations, and round characteristics.

- > Develop vehicle and infrastructure requirements.
- ➤Identify and engage with potential suppliers.
- Determine a realistic budget and timescales.

Content Summary

2. Procurement

Transport

- > Define output specifications i.e. **what** you need the vehicle to do, not **how**.
- ➤Use learnings from pre-procurement supplier engagement as a guide.
- >Ask potential suppliers for supporting evidence.
- Consider a joint procurement framework with other fleets to consolidate orders.

3. Preparation

- >Ensure that refuelling infrastructure is available nearby or is installed at the depot.
- >Upgrade your depot and workshop for fuel storage and vehicle maintenance.
- Monitor the progress of the delivery of fuel cell waste trucks and infrastructure to ensure suppliers meet agreed timescales.

Content Summary

4. Deployment

- Build in time for testing and rectifying issues with vehicles and infrastructure before signing off procurement.
- ➢ Provide training for staff to operate and maintain the vehicles safely.

5. Testing

Transport

Monitor and evaluate trucks across representative rounds and conditions to:

- Optimise operations to better suit fuel cell vehicles.
- □ Refine technical specifications for future procurement.
- Develop a long-term strategy for fuel cell trucks and infrastructure.

Energy Infrastructure

Transport

Knowledge & Enterprise

7

Timescales

Energy Infrastructure

A Transport

Updated based on HECTOR learnings

Knowledge & Enterprise

Phase	Task and Approximate Timescale
Planning	3-6 months for supplier engagement, detailed project planning, and business case.
Procurement	Varies significantly depending on public procurement processes.
Preparation	3-6 months for depot and workshop alterations.
	6-12 months for a temporary HRS (e.g. mobile or tube trailer); or 24 months for a new HRS including electrolyser.
	9-24 months for vehicle build, homologation, and delivery.
Deployment	Min. 3 months to ensure reliability before signing off the vehicle (could take up to 12 months)
Testing	3-12 months after initial deployment phase.
Operation	Standard lease / rental period for a fuel cell waste truck (5 years).
	Expected operational lifespan for a fuel cell waste truck (10 years).

Costs

Energy Infrastructure

Transport

- Indicative estimates based on HECTOR learnings
 - Vehicle costs would fall if scale increases

Knowledge & Enterprise

Green hydrogen currently sold below cost of production

Item	Approximate Cost (2019 to 2023)	
Capital Costs		
Truck Purchase	€630,000 to €750,000 (3x diesel vehicle)	
Depot Alterations	€25,000 to €50,000 (will vary significantly)	
Maintenance Technician Training	€3,000 per technician	
Driver Training	€1,000 per driver	
Operational Costs		
Hydrogen Fuel Costs	~€15 per kg (€300 for 120 to 240 km)	
Maintenance Costs	€7.000 to €10.000 per year (truck only)	

Case Studies

Transport

- Short case studies from HECTOR partners
 - □ WBD, Duisburg: Pre-procurement supplier engagement
 - □ Prezero, Arnhem: Driver and staff engagement
 - Groningen: Infrastructure development
 - □ Touraine Vallee de l'Indre: Regulations and compliance
 - □ AGR, Herten: Post-deployment manufacturer support
 - □ Aberdeen City Council: Reliability and maintenance

Thank you for listening

Fergus Worthy, Deputy Head of Transport

Fergus.Worthy@cenex.co.uk

@CenexLCFC