#### **Interreg UROPEAN UNION North-West Europe HECTOR** European Regional Development Fund

Work Package 5: Analysis

Presentation of project datalogging, processing and analysis

HAN\_UNIVERSITY OF APPLIED SCIENCES

#### HAN AUTOMOTIVE RESEARCH\_

Ben Pyman Abhishek Singh Tomar Pieter Dekker

25<sup>th</sup> October 2023



# Contents

- Summary
- Social impact
- E-trucks data analysis
- FAUN/Enginius data analysis
- Conclusion



# Project data – data used – up to 2023/07

| Data<br>provider | City               | Country | Analysis<br>time (days) | Data<br>access | Data start | Analysis<br>period |
|------------------|--------------------|---------|-------------------------|----------------|------------|--------------------|
| E-Trucks         | Arnhem             | NL      | 33                      | Yes            | 2022/06/21 | 2023/08/01         |
| E-Trucks         | Herten             | DE      | 80                      | Yes            | 2022/09/12 | 2023/08/01         |
| E-Trucks         | Groningen          | NL      | -                       | No             | -          | -                  |
| Enginius         | Duisburg           | DE      | 108                     | Yes            | 2021/04/23 | 2023/08/01         |
| Enginius         | Brussels           | BE      | -                       | No             | 2023/11/01 | -                  |
| Enginius         | Indre-et-<br>Loire | FR      | -                       | Yes            | 2023/08/01 | -                  |
| Holthause<br>n   | Aberdeen           | UK      | -                       | No             | -          | -                  |



# Project data

- E-Trucks
  - Daily aggregated values
  - Vehicle data such as speed and distance
  - H2 use and fuel cell energy
- FAUN/Enginius
  - High frequency vehicle sensor values
  - Vehicle data such as axle loads, compactor activation, and distance
  - Driveline data such as motor speed, torque and temperature
  - Powertrain data such as H2 level, battery SOC, fuel cell current and voltage



# Social impact

#### **Research of drivers' opinions and experiences**

- Questionnaire
- Few results (5 replies)
  - ca. 75% Support for Reduce the emissions of the fleet
  - ca. 75% wants to contribute to reduce emissions
  - 100% enjoys driving
  - 100% feel control over the truck
  - ca. 50% is often concerned about the driving range





# Arnhem, Netherlands

Data was used from the time period 2022/07/20 to 2023/06/30

| Distance                      | Speed                                 | H2 Use                                         | H2<br>Consumption                          | H2 Refuel                                         |
|-------------------------------|---------------------------------------|------------------------------------------------|--------------------------------------------|---------------------------------------------------|
| 58.04km<br>• Average<br>daily | 36.93<br>km/h<br>• Average<br>overall | <ul><li>6.15kg</li><li>Average daily</li></ul> | 11.82 kg/<br>100km<br>• Average<br>overall | <ul><li>6 kg</li><li>Average per refuel</li></ul> |
| 1857km                        |                                       | 196.92kg                                       |                                            | 54 kg                                             |
| • Total                       |                                       | • Total                                        |                                            | • Total                                           |

### Arnhem Netherlands– Operability

- Fairly limited operation

- except for a couple of months (Jul 2022, Dec 2022, Feb 2023) operation days are less than 4



### Arnhem, Netherlands – Driving data

Vehicle distance travelled and hydrogen consumed

No refuse weight information on dashboards







# Herten, Germany – Summary statistics

Data was used from the time period 2022/09/12 to 2023/08/01

| Distance                       | Speed                               | H2 Use                                          | H2<br>Consumption                        | H2 Refuel                                             |
|--------------------------------|-------------------------------------|-------------------------------------------------|------------------------------------------|-------------------------------------------------------|
| 81.73 km<br>• Average<br>daily | 28.68<br>km/h<br>• Average<br>daily | <ul><li>11.22kg</li><li>Average daily</li></ul> | 13.62 kg/<br>100km<br>• Average<br>daily | <ul><li>12.22 kg</li><li>Average per Refuel</li></ul> |
| 8010 km<br>• Total             |                                     | 1099.62kg<br>• Total                            |                                          | 671.84 kg<br>• Total                                  |

### Operability comparison – Herten and Arnhem

- In general, the RCV remains operational only upto 50% during the observed months
- Maximum no. of operation days (15) are observed in October 2022 and February 2023
- No operation days are recorded in June 2023

On the operation days, RCV performs more than 8 hours of operation on average



### Herten, Germany – Driving data

- Average distance traveled by the RCV remains close to 100 km, except for January and May 2023 (around 80 km)
  - Least no. of operation days in the two months
- Average H2 consumption remains close to 14 kg, except for May 2023 (around 10 kg)
- Average refuse collected remains close to 5 tons; steadily increasing in the beginning of 2023;



### Herten, Germany – Driving data

- Average H2 consumption per 100 km, varies between around 13 and 15 kg, except for May 2023, viz.
  - Having the less average traveled distance and H2 consumed per day



 Average H2 consumption per ton of refuse collection remains close to 2 kg, except for May 2023 (around 3,5 kg)



### Herten, Germany – Driving data

- Routes 3 and 6 are both low-density refuse collection routes, with comparable densities, and average refuse amount.
  - Route 6 is comparatively longer than 3 and consumed more H2 thus higher consumption for Route 6 compared to 3
- Routes 1, 7, 8, and 9 are associated with high-density refuse, thus their consumption per ton of refuse is smaller than the other routes





# Duisburg, Germany

Data was used from the time period 2022/08/01 to 2023/08/01

| Distance                                                                     | Speed                           | H2 Use                                                                     | H2<br>Consumption                      | H2 Refuel                                                                               |
|------------------------------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------|
| <ul> <li>47km</li> <li>Average daily</li> <li>21km</li> <li>Total</li> </ul> | 34 km/h<br>• Average<br>overall | <ul> <li>3kg</li> <li>Average daily</li> <li>1kg</li> <li>Total</li> </ul> | 4 kg/<br>100km<br>• Average<br>overall | <ul> <li>7 kg</li> <li>• Average per refuel</li> <li>185 kg</li> <li>• Total</li> </ul> |

## Duisburg, Germany – Utility

Analysis period: 2022/08/01 to 2023/08/01

- No operation in May 2023

- Bottom figure shows the utility percentage per month excl. weekends

- 4 months above 80%
- 5 months above 50%



## Duisburg, Germany

- Partial dataset used as input to analysis: 2022/08/01 to 2023/06/30
- Selecting a single day for analysis: 2022/08/01
- D2s# Driving to segment
- s1 Refuse collection
- s2 Refuse disposal
- s3 Refuelling
- D2s4 Driving to depot



### Duisburg, Germany – Operation





### Duisburg, Germany – Operation



### Duisburg, Germany – Operation



### Duisburg, Germany – Operation segmentation

Example day: 2022/08/01

- s1 Refuse collection
- s2 Refuse disposal
- s3 Refuelling
- D2s1 Drive to refuse collection
- D2s2 Drive to refuse disposal
- D2s3 Drive to refueling
- D2s4 Drive to base location/depot





# Duisburg, Germany – Refuse collection (s1) OF APPLIED SCIENCES



|   | No. of collections, [-]        | 261   |
|---|--------------------------------|-------|
|   | Average speed, [km/h]          | 2,14  |
| 4 | Time duration, [h]             | 4,09  |
|   | Collected refuse weight, [ton] | 15,40 |
|   | Collection distance [km]       | 11,11 |
|   | Energy consumed [kWh]          | 70,6  |
|   | Hydrogen consumed [kg]         | 2,73  |







### Duisburg, Germany – Operation: Refuse collection (s1)

Energy consumption related to driving discussed in Drive2Refueling example

- Energy demand per ton positively varies with no. of collection stops and with the distance

- Route should be classified as
  - Collections per km
  - Collections per ton





# Duisburg, Germany – s2, s3







# Duisburg, Germany – Drive to refueling (D25) LIED SCIENCES



|   | Average speed, [km/h]    | 29,96 |
|---|--------------------------|-------|
|   | Time duration, [h]       | 2,52  |
| 7 | Average weight, [ton]    | 20,45 |
| ~ | Distance travelled, [km] | 80,97 |
|   | Energy consumed, [kWh]   | 94,77 |
|   | Hydrogen consumed, [kg]  | 2,28  |







### Duisburg, Germany – Operation: Drive to refueling (D2s3)

2 distinctive types can be seen:

- Blue eclipse: After refuse-disposal (lower average weight)
  - Two distinctive route from disposal area to refueling -> see different distances

- Orange eclipse: After refuse-collection (varying average weight) and higher energy consumption than the previous one





# Duisburg, Germany – Segments



## Duisburg, Germany – Operation duty cycles

• Segments are combined into duty cycles

| DC-1 | Refuse-collection<br>(s1) | D2s2 Refuse-disposal (s2) C2s3 Refueling (s3) |
|------|---------------------------|-----------------------------------------------|
| DC-2 | Refuse-collection<br>(s1) | D2s3 Refueling D2s2 Refuse-disposal (s3) (s2) |
| DC-3 | Refuse-collection<br>(s1) | D2s2 Refuse-disposal<br>(s2)                  |
| DC-4 | Refuse-collection<br>(s1) | D2s3 Refueling<br>(s3)                        |
| DC-5 | Refuse-collection<br>(s1) |                                               |



## Duisburg, Germany – Operation duty cycles

• Segments are combined into duty cycles

| DC-1 | Refuse-collection<br>(s1) | D2s2 Refuse-disposal (s2) C2s3 Refueling (s3)    |
|------|---------------------------|--------------------------------------------------|
| DC-2 | Refuse-collection<br>(s1) | D2s3 Refueling D2s2 Refuse-disposal<br>(s3) (s2) |
| DC-3 | Refuse-collection<br>(s1) | D2s2<br>Kefuse-disposal<br>(s2)                  |
| DC-4 | Refuse-collection<br>(s1) | D2s3 Refueling<br>(s3)                           |
| DC-5 | Refuse-collection<br>(s1) |                                                  |



## Duisburg, Germany – Operation day

 Generic day representation using duty cycles





1<sup>st</sup> D2s1 segment is assumed to start from the base location. In the data available, it may be only partially observed.

2<sup>nd</sup> D2s1 segment may start after either the refuse-disposal or refueling segment.

This is the last driving segment of the day and may start after the refuse-collection or refuse-disposal or refueling segment depending on the duty cycle variant of the 2<sup>nd</sup> duty cycle



# Comparison of Vehicles

| Category                       | Metric             | Arnhem, NL | Duisburg, DE | Herten, DE |
|--------------------------------|--------------------|------------|--------------|------------|
| Distance [km]                  | Daily average      | 58.04      | 82.51        | 81.73      |
|                                | Total              | 1857.4     | 8663.5       | 8010       |
| H2 Use [kg]                    | Daily average      | 6.15       | 6.49         | 11.22      |
|                                | Total              | 196.92     | 700.5        | 1099.62    |
| H2 Consumption [kg/100km]      | Daily average      | 11.82      | 7.58         | 13.62      |
| Energy Consumption<br>[kWh/km] | Daily average      | 1.71       | 1.86         | 1.75       |
| H2 Refuel                      | Average per [kg]   | 6          | 11.33        | 12.22      |
|                                | Number             | 9          | 65           | 55         |
|                                | Average time [min] | 17.44      | 12.65        | 10.84      |
| Operation                      | Total days         | 32         | 108          | 80         |

### Estimated emission savings within the analysis period

In comparison to diesel RCV



#### **Total emissions savings**



# Learnings from project/conclusion

- Include manufacturers in project to incentivise sharing of data
- Ensure good pipeline with clean and consistent data organised before vehicle contract signed



# Future research – Data utility

- Data-based modelling:
  - Predict/forecast a sequence of duty-cycle segments optimized for fuel/energy consumption using the following high-level inputs:
    - 1. Refuse-collection route optimization
    - 2. H2 level at the start of the daily operation
    - 3. Battery SoC at the start of the daily operation
  - Route optimization, refuse-collection authorities:
    - 1. Plan refuse-collection operation for an area optimized for fuel/energy consumption and operational (refuse-collection) requirements
    - 2. Assess the feasibility of operating H2-fueled refuse-collection vehicles on unknown routes



# Future research - Data utility

- Grey-box modeling approach based on the current analysis
  - further optimization at low-level, e.g., energy management strategy
  - From segment-based prediction to real-time (time-series) based prediction
- Adoption of performance-based standards for RCVs
  - Acceleration capability
  - Startability and gradability for operation on hilly routes