

European Regional Development Fund

REPORT

- DATE: September 2023
- Authors: Hobus, Inka; Kolisch, Gerd;
- ACTION: A3 Valorising Activated Carbon from Cellulose (WOW-AC) for Micropollutant elimination in Constructed Wetlands
- SUBJECT: D 3.3 Finding most suitable locations for AC-production (larger STP) and possible application in Constructed Wetlands -Case Study

WOW! is supported by the Interreg North-West Europe program.

WWW.NWEUROPE.EU/WOW

Content

1		Introduction	6
2		Description of process technology	7
	2.1	Production of WOW _{Biochar}	7
	2.2	Elimination of micropollution with WOW _{biochar} in constructed wetlands	8
	2.3	Design of constructed wetlands and fine sieves	9
	2.3.1	Constructed wetlands	9
	2.3.2	Fine sieves	10
	2.4	Investment cost	10
	2.4.1	Constructed wetlands	10
	2.4.2	Fine sieves	11
	2.5	Case Study	12
3		Saarland: River Blies	
	3.1	Description of the catchment area	13
	3.2	Variant 1	15
	3.2.1	Implementation of constructed wetlands with $WOW_{biochar}$ at small STPs	15
	3.2.2	Implementation of fine sieves on larger STPs	18
	3.2.3	Impact of the fine sieve on the treatment capacity	19
	3.2.4	Logistic WOW _{biochar}	20
	3.2.5	Investment cost	21
	3.3	Variant 2	22
	3.3.1	Implementation of constructed wetlands with $WOW_{biochar}$ at small STPs	22
	3.3.2	Implementation of fine sieves on larger STPs	24
	3.3.3	Logistic WOW _{biochar}	24
	3.3.4	Investment cost	25
	3.4	Summary of the case study: Saarland	26
	3.4.1	Impact on water quality	26
	3.4.2	Cost comparison	27
4		Ireland	
	4.1	Description of the catchment area	29
	4.2	Implementation of fine sieves on larger STPs	29
	4.3	Implementation of fine sieves on larger STPs	30

4.4	Logistic WOW _{biochar}	.31
4.5	Investment cost	.32
5	Scotland	. 33
5.1	Description of the catchment area	.33
5.2	Implementation of constructed wetlands with WOW _{biochar} at small STPs	.33
5.3	Implementation of fine sieves on larger STPs	.34
5.4	Investment costs	.35
5.5	Impact on water quality	.35
6	Conclusions	. 37
7	References	. 38
8	Abbreviations	. 40
9	Appendix	. 41
9.1	Steckbriefe Saarland	.41
9.2	Steckbriefe Irland	.46

List of figures

Figure 1: Finesieves in Ede (WOW, 2022)7
Figure 2: Filter construction of a conventional Retention Soil Filter ((E. Christoffels, 2014))
Figure 3: Filter structure of retention soil filter (RSF) with addition of biologically activated plant carbon
(WOW _{Biochar})
Figure 4: Example for RSF design for small STP Haupersweiler in Catchment area Blies in Saarland
(Germany)
Figure 5: Specific investment costs for constructed wetlands of combined sewer overflows depending on
the filter surface area for the year 2021 (modified data from (Grotehusmann, 2015) reference year 2014)
Figure 6: Selected part of catchment area Blies, Saarland (Germany) with considered STP for RSFs
installation (modified) (Schmitt et al., 2019) 13
Figure 7: Concentration profile of River Oster for Diclofenac (modified) (Schmitt et al., 2019) 14
Figure 8: Dry weather days in 2022: STP Haupersweiler 16
Figure 9: Treated annual sewage water flow of 70% with a design sewage water of 90 m^3/h 17
Figure 10: Influence of the fine sieve on the treatment capacity and air volume for aeration of STP
Haupersweiler and STP Ottweiler for different scenarios
Figure 11: Concentration profile of River Oster for Diclofenac (modified) (Schmitt et al., 2019) for the
current condition, for variant 1 and variant 2 27
Figure 12: Catchment area in the south-east of Ireland 29
Figure 13: Distribution of the STP in Scotland in Scotland, divided into 4 regions. Region 1- blue, Region 2-
purple, Region 3- orange, Region 4- green

Figure 14: Selected locations of STP for different regions in Scotland where the constructed	wetlands with
WOW _{biochar} could be installed (circles) and selected STP for cellulose recovery (squares)	
Figure 15: Annual diclofenac reduction in % for Scottland	
Figure 16: Share of the Diclofenac load in the effluent for Scotland depending on the size of	f STP in [%] 36

1 Introduction

Micropollutant have been detected ubiquitously in the aquatic environment. In addition to pesticides and industrial chemicals, pharmaceutical agents used in human and veterinary medicine have become the focus of discussion.

Since a large number of micropollutant cannot be retained in a targeted manner or only inadequately in conventional mechanical-biological sewage water treatment plants, their targeted elimination by means of micropollutant elimination stages (ozonation, adsorption on activated carbon, etc.) is currently being intensively investigated. However, micropollutant elimination stages are mainly used in larger sewage water treatment plants. Simple and robust solutions for smaller sewage water treatment plants are hardly available. However, small sewage water treatment plants sometimes have a major impact on water quality because they discharge into small receiving water bodies. A simple and effective option are constructed wetlands with activated carbon. High elimination efficiencies of 80 % have been demonstrated by (Brunsch et. al, 2018)). Biochar can also be used as an alternative to activated carbon. Biochar is a carbon material that can be produced by carbonisation (pyrolysis: combustion in the low-oxygen environment) of various bio-based materials. Activation of the biochar further increases its surface area, which improves its adsorption capacity. Within the framework of WOW! Project, the production of biochar from cellulose from wastewater (toilettpaper) as feedstock has been proved (WOW, 2020). However, the activation of the biochar showed only low efficiency. Therefore, the pyrolis of Cellulose at low temperature in combination with biological activation was tested. (Vendetti et al., 2023) showed high removal efficiency for a biological activated biochar with 50% biochar and 50% straw. In the following, biologically activated charcoal from a cellulose-straw mixture is referred to as WOW_{Biochar}.

In the report, solutions for biochar production (on larger sewage treatment plants (STPs)) and subsequently their use in Constracted Wetlands with WOW_{Biochar} (on smaller STPs) are developed for three different areas in NWE.

2 Description of process technology

2.1 Production of WOW_{Biochar}

Sewage water contains a lot of cellulose, which is well suited for biochar production. The share of cellulose in the total COD in the influent of the wastewater treatment plant is about 30% (Ruiken, 2013). Fine sieves can be used to remove the cellulose from the wastewater. It can then be dewatered, dried and pressed into pellets. For the case study, a mixture of cellulose pellets and straw (50% cellulose and 50% straw by volume) was considered to produce biochar, which is carbonised under lack of oxygen at high temperatures and subsequently biologically activated. Studies by (Vendetti et al, 2023) showed the highest micropollutant elimination rates for this biochar.

Cellulose is mainly found in fibrous form in municipal sewage water and can be removed with high efficiency using fine sieves. For cellulose separation, "rotating belt fine sieves" can be used. This involves two processes: Separation of solid particles and their subsequent thickening in a space-saving form.

The sewage water passes through the continuously moving filter belt. The speed of rotation changes depending on the amount of inflowing water. The mesh size can be selected between 90 and 2000 microns, depending on the wastewater quality and purification objective. Suspended solids and solids larger than the pore diameters are retained and help to remove finer materials from the sewage water. The sieveings are washed in a cellulose scrubber and dewatered in a screw press. Figure 1 shows the fine sieve (right) and the cellulose washer (left).

Figure 1: Finesieves in Ede (WOW, 2022)

With the removal of cellulose from the sewage water, the COD-load to biological treatment stage is reduced. The required oxygen demand in the biological stage for oxidation of the carbon compounds and thus the required energy demand is reduced. However, with the use of cellulose for WOW_{Biochar} production, no energy-rich primary sludge is available on the STP that can be used in the digestion stage for biogas production. In the case study, therefore, only STPs on which no primary sedimentation and no digester are installed were considered for the integration of fine sieves.

2.2 Elimination of micropollution with WOW_{biochar} in constructed wetlands

Constructed wetlands are used as a nature-based sewage water treatment technology in rural areas (DWA-A 216, 2006) and for the treatment of discharge water from combined sewer systems (Grotehusmann, 2015). Studies by (Brunsch et al., 2018), showed that with constructed wetlands micropollutants such as heavy metals and pharmaceutical residues can be eliminated in the effluent of a STP by the addition of activated carbon. (Vendetti et al. 2022a, 2022b) demonstrate on a pilot scale level that also high elimination rates for micropollutants can be achieved with the use of biochar in constructed wetlands. (Venditti et al. 2023) showed on a pilot scale that a comparably high elimination performance of 80% on average can be achieved with the biologically activated WOW_{biochar} from recovered cellulose from sewage water. The results show that this nature based technology can achieve comparable elimination rates to technical processes for micro-pollutant removal such as ozonation and GAK filters. Due to the simple design and low operational effort, the use of constructed wetlands with char is particularly suitable for small STPs.

The structure of a conventional constructed wetland for the purification of discharge water from combined sewer systems is shown in Figure 2. The filter body of sand (diameter 0.063-2 mm) has a layer thickness of 0.75 to 1 m. It is dewatered by a drainage system situated below the filter layer (filter gravel 2-8 mm diameter). It is dewatered by a drainage system situated below the filter layer (filter gravel 2-8 mm diameter). Beneath the drainage layer the constructed wetland is sealed against the ground with an impervious membrane. The water can be supplied either from above (vertical fow) or from the side (horizontal flow). Distribution channels ensure an even distribution of the sewage water. As the water percolates through the filter layer, both physical (adsorption) and biochemical (microbiological cleaning) processes take place, purifying the wastewater. In general, constructed wetlands are planted with reeds to ensure a permeable filter surface. (E. Christoffels, 2014).

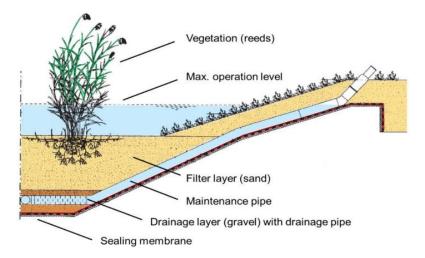


Figure 2: Filter construction of a conventional Retention Soil Filter ((E. Christoffels, 2014))

For the case study, WOW_{biochar} is used for the elimination of micro-pollutants in constructed wetlands. Following (Venditti et al. 2023), a 65 cm high layer with a mixture of 85 vol.% sand with grain size 0-3 mm and 15 vol.% WOWbiochar was chosen for the filter design (see Figure 3). The elimination efficiency of the biologically activated WOW_{biochar} was set at an average of 80 % for micropollutants.

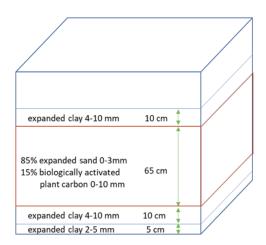


Figure 3: Filter structure of retention soil filter (RSF) with addition of biologically activated plant carbon (WOW_{Biochar})

2.3 Design of constructed wetlands and fine sieves

2.3.1 Constructed wetlands

For the determination of the required filter area of the constructed wetlands with WOW_{biochar}, the following two approaches were considered according to (Venditti et al., 2023):

- specific area of 0.4 m²/p.e.
- Average hydraulic surface loading of 200 L/m²/d or maximum hydraulic surface loading of 400 L/m²/d

The largest area was used in the following calculation. Length and width were chosen according to the space available. For the sand and $WOW_{biochar}$ proportions, the ratios according to chapter 2.2 were taken into account. For the calculation of the $WOW_{biochar}$ mass, a char density of 1.500 kg/m³ was used. Figure 4 shows an example of the design of a soil filter for a STP with a connection size of 3.033 p.e..

WWTP	Unit	Haupersweiler	
		Input Data	
Connected PE	PE	3,033	
Annual flow	m³/a	794,346	EVS WWTP Haupersweiter
Waste water flow to	1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
constructed wetland	m ³ /a	525,600	
Treating process	-	BB/DN/AS	
Receiving water	-	OSTER	
		Wetlands Data	Distribution structure
Area	m ²	3630	
Length	m	66	
Width	m	55	
Filterbody	m ³	2360	
Volume: Sand	m ³		
	m ³	2006	55x66=3620 m ²
Volume: WOW _{Char}	m	354	55x66=3620 m ² 1810 m ²
Amount of WOW _{Biochar}			
(50% straw/cellulose)	kg	530,888	
Investment costs			
without WOW _{Biochar}			1810 m ²
production costs	€	2,050,801	ő
Transport costs			
WOWBiochar	€	4,202	
Transport costs	1		
Cellulose	€	-	
Total investment costs			
of constructed			A CONTRACT OF A CONTRACT.
wetland	€	2,585,890	
Average filter velocity	m/h	0.013	Sickelmeesbach
Average Hydraulic			-SDach
Volume Rate	$L/(m^2 \cdot d)$	323.967	

Figure 4: Example for RSF design for small STP Haupersweiler in Catchment area Blies in Saarland (Germany)

2.3.2 Fine sieves

The fine sieves were designed for the maximum sewage water flow. For the maximum hydraulic capacity of a fine sieve module, 484 m³/h was taken from a manufacturer's offer. When determining the number of fine sieve, a reserve module was always included. The purification performance of the fine sieve was determined analogously to a separation performance of a primary treatment with a hydraulic retention time of 1.5-2 h according to (DWA A 131, 2016).

2.4 Investment cost

2.4.1 Constructed wetlands

To determine the investment costs, specific investment costs in ℓ/m^2 were applied depending on the filter surface area according to (Grotehusmann2015). The investment costs refer to the year 2014 and were extrapolated to the year 2021 with an inflation rate of 6% (conversion factor: 1.689). The cost curve calculated with this data is shown in Figure 5.

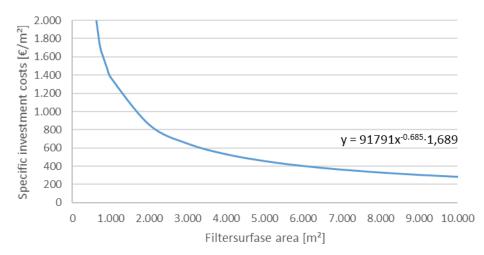


Figure 5: Specific investment costs for constructed wetlands of combined sewer overflows depending on the filter surface area for the year 2021 (modified data from (Grotehusmann, 2015) reference year 2014)

In Table 1 shows the cost shares for the constructed wetlands. In addition, the costs for pyrolysis and biological activation of the WOW_{Biochar} must be taken into account. Based on manufacturer's data, a price of $1,000 \in /t$ was estimated.

Constructed wetlands cost	Capital expenditures	Depreciation
breakdown	breakdown in %	period in years
Earthwork and filters		
installation	45 %	25a
Inlet and outlet structures	25 %	40a
Sealing	10 %	25a
Instrumentation and		
control engineering (ICE)	10 %	10a
Plants	5 %	25a
Rest	5 %	10a
	WOW _{Char} Costs	
WOW _{Char}	Costs without WOW _{Char}	25a
Sum	100%+WOW _{Char} Costs [%]	

Table 1: Constructed wetlands with WOW_{Biochar} cost breakdown (modified, Dieter Grotehusmann, M. U. (2015))

2.4.2 Fine sieves

Table 2 shows the cost for the fine sieves for cellulose recovery. The number of fine sieves depends on the maximum inflow volume flow. The costs of instrumentation and control engineering are estimated at 15% of the costs for the machine technology. The integration of the cellulose recovery plant into an existing STP is estimated at 50% of the total investment costs.

Table 2: Investment Cellulose fine sieve

Cellulose finesieve cost breakdown								
		Depreciation						
Pos.	Name	period (year)	Preis (€)					
1	Cellulose Screen	15	100,000					
2	Cellulose scrubber	15	35,000					
3	Screw press	15	40,000					
	Instrumentation and							
	control engineering							
	(ICE): 15% Machine							
4	technology	15	15%					
	Integration: 50% total		50% total					
5	costs		costs					

2.5 Case Study

Considering the design approaches and costs described above, concepts for recovery of cellulose and subsequent production of WOWBiochar on larger STPs and the construction of constructed wetlands on smaller STPs were investigated for the following three regions.

- River catchment in Saarland / Germany
- Region in the south-west of Ireland
- Scottland

3 Saarland: River Blies

3.1 Description of the catchment area

The Blies is the largest tributary of the Saar and lies almost entirely in the Saarland. The total area of the Blies catchment is 1,960 km². The upper part of the Blies catchment selected for further consideration lies entirely in the Saarland and covers an area of 445 km². The catchment area contains 33 STPs with a capacity of between 30 and 75,000 p.e.. The total number of connected inhabitants is 206,000 p.e.. Drainage takes place in a combined system.

On the most important tributary, the Oster, with a flow length of almost 30 km, there are 15 STPs (including the small tributaries) with a capacity of between 30 and 4,000 p.e. and with the following process technology:

- 7 wastewater treatment plants with activated sludge processes: with nitrification, denitrification and aerobic sludge stabilisation,
- 2 aerated pond plants with sliding immersion tanks,
- 5 SBR plants
- 1 constructed wetland.

The total connected population is 17,777 p.e.. The catchment area with the STPs is shown in Figure 6.

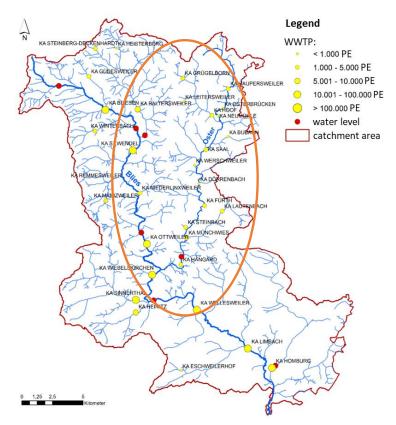
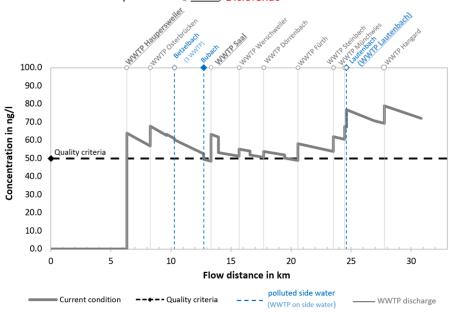



Figure 6: Selected part of catchment area Blies, Saarland (Germany) with considered STP for RSFs installation (modified) (Schmitt et al., 2019)

For the sub-catchment of the Blies described above a study was carried out in 2015 to assess the impact of STPs on the water body (Schmitt et al., 2019). The receiving water bodies of the STPs are relatively small, but some STPs discharge their effluent near the spring area, therefore they have a high influence on the micro pollution concentration in the water body. Figure 7 shows the balanced diclofenac concentration along the flow path of the river Oster. With the discharge of the Haupersweiler STP, the concentration already rises above the quality criteria of the Environmental Quality Standards Directive (EQSD). With the discharge of other STPs, the concentration rises to over 80 ng/l.

Scenario comparison MQ, Oster, Diclofenac

Figure 7: Concentration profile of River Oster for Diclofenac (modified) (Schmitt et al., 2019)

For this sub-catchment, it was investigated whether the quality criteria for the parameter diclofinac in the Oster river can be met by implementation of constructed wetlandes with $WOW_{biochar}$. Furthermore, it should be examined whether sufficient cellulose for the production of $WOW_{biochar}$ can be recovered in the catchment. Here, only the integration of cellulose recovery with fine sieves at the STP was considered in detail. For the production of biochar, it was assumed that a pyrolysis plant near the Ottweiler STP could be used. This location is relatively centrally located, thus minimising the transport costs for the cellulose and the $WOW_{biochar}$. Two variants were investigated for the Blies catchment:

Variant 1 describes the case where STP Haupersweiler, STP Saal and Lautenbach are extended by constructed wetlands with WOW_{biochar}, with cellulose recovery taking place at the STP Haupersweiler, STP Sinnerthal and STP Ottweiler. STP Haupersweiler has a high influence on the micro-pollutant concentration (see Figure 7) and it is planned to connect additional 800 p.e. to the treatment plant. By installing fine sieves, the cost-intensive expansion of the plant can be avoided. STP Saal is an aerated pond system with disc baffles, which should be converted to an activated sludge system in about 10 years, resulting in enough space for a constructed wetlands with

WOW_{biochar}. The STP Lautenbach has a small tributary as a receiving water body, so that the installation of an RSF makes sense here as well.

• Variant 2 combines all treatment plants where it would be possible to install a constructed wetlands with WOW_{biochar}. Since in this case a much higher quantity of WOW_{Biochar} would be required, the number of treatment plants where cellulose recovery is installed increases. The variant is intended to demonstrate the maximum possible reduction of micropollutants in water bodies through the use of constructed wetlands with WOW_{biochar} at smaller STPs.

Table 3 provides an overview of the two variants.

Table 3: Variants for the implementation of constructed wetlands and fine sieves for the river catchemnt Blies (Saarland, Germany)

	Variant 1		Varia	nt 2
	Constructed Wetland +		Constructed Wetland +	
WWTP	WOW _{Biochar}	Finesieve	WOW _{Biochar}	Finesieve
Haupersweiler	Х	Х	X	Х
Saal	Х		X	
Lautenbach	Х		X	
Osterbrücken				
Werschweiler			X	
Dörrenbach				
Fürth			X	
Steinbach				
Münchwies				
Hangard			X	
Leitersweiler			X	
Hoof			X	
Grügelborn			X	
Bubach/Ostertal				
Sinnerthal		Х		Х
St.Wendel			1	Х
Bliesen			[Х
Ottweiler		Х		Х
Wiebelskirchen			1	Х

3.2 Variant 1

3.2.1 Implementation of constructed wetlands with WOW_{biochar} at small STPs

For the design of the micro pollution elimination stage of a STP, it is sufficient if a partial sewage water amount is treated. According to (KOM-M.NRW, 2016), the following criteria are recommended for determining the design sewage water amount:

- The design sewage water amount should be greater than or equal to the maximum dry weather runoff in the annual average.
- sewage water amount treated with the soil filter must be greater than or equal to 70% of the annual water volume.

The procedure is explained using the STP Haupersweiler as an example. The dry weather days were determined using the polygon of the moving 21-day minima of the daily discharges (ATV-DVWK-A 198.

(2003)). This method considers a time interval of 10 days before and 10 days after the observed day. All daily flows between the minimum daily flow and 1.2 times the minimum daily flow are classified as dry weather flows (see Figure 8). The maximum dry weather flow was determined for these days. This results in a mean dry water flow of 54 m³/h and a maximum dry water flow of 73 m³/h (annual mean value) for the STP Haupersweiler.

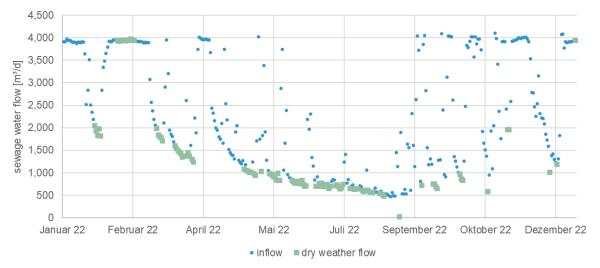


Figure 8: Dry weather days in 2022: STP Haupersweiler

The determination of 70 % of the annual wastewater volume is shown in Figure 9. Due to the high influence of infiltration water, the value is 90 m³/h. Table 4 summarises the results for the three STPs considered. All STPs have a very high amount of infiltration water, which leads to large surfaces for the constructed wetlands and associated high costs. For an economic implementation, a reduction of the infiltration water content is therefore necessary. A reduction of the infiltration water content to 30% was taken into account for the case study. This results in a design water volume of 60 m³/h for the Haupersweiler STP, 17 m³/h for the Saal STP and 45 m³/h for the Lauterbach STP.

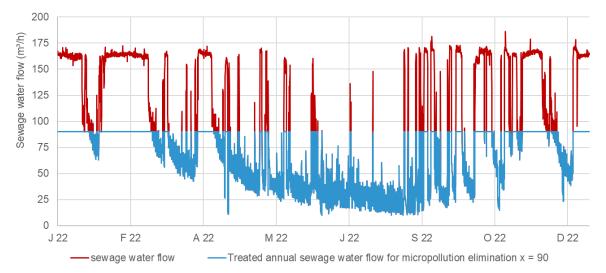


Figure 9: Treated annual sewage water flow of 70% with a design sewage water of 90 m³/h

			rsweiler	Lautenbach		Saal	
		current	reduce	current	reduce	current	reduce
		state	infiltration	state	infiltration	state	infiltration
EW	PE	3,033	3,033	3,118	3,118	1,632	1,632
annual water flow	m³/a	794,346	509,870	454,448	410,025	204,633	196,194
sewage water	m³/a	112,438	112,438	154,000	154,000	55,085	55,085
rain water	m³/a	369,322	369,322	217,525	217,525	127,338	127,338
infiltration water	m³/a	312,586	28,110	82,923	38,500	22,210	13,771
infiltration water: share	%	74	20	25	20	29	20
Fremdwasseranteil	%	74	20	35	20	29	20
micropollutant		70	(EA)	70	(62)	70	(52)
elimination: share	%	70	(54)	70	(62)	70	(52)
micropollutant		2 1 0	1 4 4 0	1 4 4 0	1 000	720	408
elimination: Max flow	m³/d	2,160	1,440	1,440	1,080	720	408
micropollutant			475				
elimination: Max flow	l/PE/d	712	475	462	346	441	250
Filter surface	m²	5400	3600	3600	2700	1800	1020
Filter surface	m²/EW	1.78	1.19	1.15	0.87	1.10	0.63
max hydraulic surface load	l/m²/d	400					-

Table 4: Design sewage water flow for constructed wetlands with WOW_{biochar} considering the infiltration water

Table 5 summarises the input data and results for variant 1. The required surface area sums up to 7,400 m² for the three STPs and a required WOW_{biochar}-quantity of 1,082 tonnes.

WWTP	Unit	Haupersweiler	Saal	Lautenbach	Sum		
Input Data							
Connected PE	PE	3,033	1,632	3,118	7,783		
Annual flow	m³/a	794,346	196,194	410,025			
Waste water flow to							
constructed wetland	m³/a	525,600	148,920	394,200			
Treating process	-	BB/DN/AS	BT/STK	BB/DN/AS			
Receiving water	-	OSTER	OSTER	LAUTENBACH			
		Wetlands Data					
Area	m ²	3630	1050	2720	7,400		
Length	m	66	30	68			
Width	m	55	35	40			
Filterbody	m ³	2360	683	1768	4,810		
Volume: Sand	m³	2006	580	1503	4,089		
Volume: WOW _{Char}	m³	354	102	265	722		
Amount of WOW _{Biochar}							
(50% straw/cellulose)	kg	530,888	153,563	397,800	1,082,250		
Investment costs							
without WOW _{Biochar}							
production costs	€	2,050,801	1,387,483	1,872,587	5,310,871€		
Transport costs		·····	·····	·····	·····		
WOWBiochar	€	4,202	760	2,618	7,579€		
Transport costs							
Cellulose	€	-	-	-	13,519€		
Total investment costs							
of constructed							
wetland	€	2,585,890	1,541,805	2,273,005	6,414,219€		
Average filter velocity	m/h	0.013	0.011	0.012			
Average Hydraulic							
Volume Rate	L/(m²⋅d)	323.967	274.286	282.353			

Table 5: Design constructed wetlands with WOW_{Biochar} for variant 1

3.2.2 Implementation of fine sieves on larger STPs

To determine the amount of cellulose, a specific cellulose content in the wastewater of 0.0317 kg/p.e./d was used according to (WOW, 2019). Since the WOW_{Biochar} is produced from a cellulose-straw mixture, the amount added to the pyrolysis is twice as large. The pyrolysis and biological activation processes result in high feedstock losses, and the total yield of activated WOW_{Biochar} is 20%. Only larger STPs without pre-treatment and sludge digestion were considered as locations for cellulose recovery. In the catchment area, 6 STPs could be equipped with cellulose recovery under these boundary conditions (see Table 6). For variant 1, three STPs were selected for cellulose recovery. This results in an annual cellulose amount of 371 t/a respective 148 t/a WOW_{Biochar} (see Table 7). With this amount of WOW_{Biochar}, the selected STPs can be equipped with constructed wetlands for micro pollution elimination within 8 years (see Table 8).

Name	Connected PE	Annual flow m³/a	Primary clarifier yes / no	Digester yes / no	Finesieve Anzahl	Cellulose Amount kg/d	WOW _{Biochar} Amount kg/d
Haupersweiler	3033	714102	no	no	2	96	38
Ottweiler	9,628	1,712,649	no	no	2	305	122
Sinnerthal	19,381	3,080,558	no	no	3	614	246
St.Wendel	13,316	2,400,343	no	no	3	422	169
Bliesen	7,082	1,433,392	no	no	2	224	90
Wiebelskirchen	8,996	971,596	no	no	2	285	114

Table 6: Selected STP for finesieve installation in the catchment area

Table 7: Total production per year for Variant 1

WOW _{Biochar}	kg/a	148,297
Straw-Amount	t/a	370.742
Cellulose-Amount	t/a	370.742
The ammount to		
be pyrolyzed		
(Straw +		
Cellulose)	t/a	741.484

Table 8: Time schedule for variant 1 for the implementation of constructed wetlands with WOW biochar

Year	kg WOW _{Biochar} (Cell.+S	traw)
		Haupersweiler
1	148,297	
2	148,297	
3	148,297	
4	148,297	530,888
		Saal
5	210,596	153,563
6	205,331	Lautenbach
7	148,297	
8	148,297	397,800

3.2.3 Impact of the fine sieve on the treatment capacity

With the integration of the fine sieves on the STPs, the COD load to the biological stage is reduced. This has an influence on the required activated sludge tank volume as well as on the required oxygen demand. In order to quantify the influence, the biological stage for the Haupersweiler and Ottweiler STPs was designed according to German design rules (DWA-A 131, 2016). The results are shown in Figure 10. Compared to the current state (szenario 0), the integration of a fine sieve (scenario 1) reduces the required activated sludge tank volume for both STPs by about 40 % and the required oxygen demand at the average annual temperature by about 20 %. At the Haupersweiler STP, additional 800 p.e. could be connected without exceeding the existing basin volume. At the Ottweiler STP, wastewater from nearby plants in Mainzweiler and Niederlinxweiler can be transferred, resulting in an additional load of 3,600 p.e.. With the

increase in connection capacity, the required air volume for the biological stage also increases. However, it is in the same order of magnitude for both plants compared to the current state. Furthermore, the required basin volume is shown in order to achieve the planned increase in the expansion capacity of the two treatment plants without the integration of a fine sieve. The tank volume and the aeration system would have to be expanded by about 20 %.

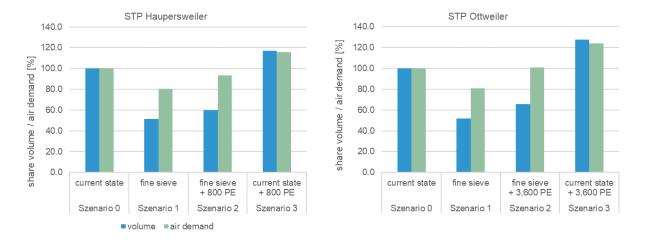


Figure 10: Influence of the fine sieve on the treatment capacity and air volume for aeration of STP Haupersweiler and STP Ottweiler for different scenarios

3.2.4 Logistic WOW_{biochar}

The following logistic must be taken into account for the production and installation of the WOW_{biochar}:

- Transport of the cellulose from the STPs with cellulose recovery to the pyrolysis plant.
- Transport of the WOW_{biochar} to the small STPs for the construction of the constructed wetlands

For the location of the pyrolysis plant, the industrial area near STP Ottweiler was chosen. This site is centrally located in selected sub-catchment area, which allows short transport distances and times. In the calculation, the specific transport costs for the cellulose as well as for the WOW_{biochar} of $10 \notin/(truck \cdot km)$ and a loading quantity of a motor vehicle of 25 t/truck were assumed. This results in transport costs of $13,519 \notin$ for the cellulose and $6,874 \notin$ for the WOW_{Biochar} (see Table 9 and Table 10).

	V	ariant 1		
Transport of cel	lulose froi	m large KA	towards	the pyrolysis
plant (locatio	n: Industri	al area nea	ar WWTP	Ottweiler)
from	km	t/a	€/a	to
Haupersweiler	19	35	382	Ottweiler
Sinnerthal	8	111	416	Ottweiler
St.Wendel	10	224	892	Ottweiler
Sum			1,690	
Total transport co with corre				0
			13,519)€

Table 9: Transport cost of cellulose and WOW_{biochar} for variant 1

Table 10: Transport cost of WOW_{biochar} for variant 1

	V	ariant 1		
Transport of WO	W _{biochar} fr	om pyrolys	sis plant to	o constructed
	w	retlands		
from	km	t/a	€/a	to
Haupersweiler	19	531	4,202	Ottweiler
Saal	13	154	936	Ottweiler
Lautenbach	11	398	1,736	Ottweiler
Sum			6,874	

3.2.5 Investment cost

Table 11 shows the investment costs and the cost break down for the installation of the three constructed wetlands with WOW_{biochar} for variant 1. The investment costs without consideration of the WOW_{biochar} production were calculated with the specific area-related investments costs from section 2.4.1. The WOW_{Biochar}-production costs were assumed to be 1000 \notin /t. This results in overall investment costs of 6.4 million \notin . Compared to a conventional constructed wetland, additional costs of 21% are incurred for the production and transport of the WOW_{biochar}.

Table 12 shows the cost composition for cellulose recovery for variant 1. In total 8 fine sieves modules are required on the three STPs. For each STP with cellulose recovery system, a screw press and a switch cabinet have to be considered.

The total investment costs for both the constructed wetlands with $WOW_{biochar}$ and the fine sieves for variant 1 sums up to \in 8.86 million.

Constructed wetlands	Capital	Depreciation	Capital
cost breakdown	expenditures	period	expenditures
Variant 1	breakdown in %		breakdown in €
Earthwork and filters			
installation	45 %	25a	2,389,892€
Inlet and outlet structures	25 %	40a	1,327,718€
Sealing	10 %	25a	531,087€
Instrumentation and	10 %	10a	531,087€
Plants	5 %	25a	265,544€
Rest	5 %	10a	265,544€
WOW _{Char} including			
transport costs	21%	25a	1,103,348 €
Sum	121%		6,414,219€
spezif. cost CWetl.			682 €/m²
spezif. cost inkl. $\mathrm{WOW}_{\mathrm{Char}}$			824 €/m²

Table 12: Cost breakdown of cellulose fine sieves for Variant 1

	Cell	ulose finesieve (cost breakdov	wn	
		Depreciation			
Pos.	Name	period (year)	Preis (€)	Amount	Total (€)
1	Cellulose screen	15	100,000	7	700,000
2	Cellulose scrubber	15	35,000	7	245,000
3	Screw press	15	40,000	3	120,000
	Instrumentation and				
	control engineering				
	(ICE): 15% Machine				
4	technology	10	159,750		159,750
	Installation: 50% total				
5	cost				1,224,750
	Total				2,449,500

3.3 Variant 2

3.3.1 Implementation of constructed wetlands with WOW_{biochar} at small STPs

In variant 2, 9 STPs are extended with constructed wetlands with WOW_{biochar} in the Oster catchment area. 13,863 p.e. are connected to the 9 STPs. The integration of constructed wetlands is not technically possible at the remaining STPs. The filter area was determined for the additionally considered STPs in comparison to variant 1 using a specific area of 0.4 m^2 /p.e., as no data on the sewage water volume was available.Table 13 summarises the input data and results for variant 2. The required surface area sums up to 13,545 m² for the three STPs and a required WOW_{biochar}-quantity of 3,107 tonnes.

		Haupers		Wersch		Lauten		Leiters		Grügel	
WWTP	Unit	weiler	Saal	weiler	Fürth	bach	Hangard	weiler	Hoof	born	Sum
				Input	Input Data						
Connected PE	PE	3,033	1,632	525	1,482	3,118	1,806	517	935	815	13,863
Annual flow	m³/a	794,346	196,194		193,971	410,025	207,288	73,471			
Waste whater flow to											
be treated in RSF	m³/a	525,600	148,920		155,177	394,200	165,830	58,777			
Treating process		BB/DN/AS	BT/STK	BT/STK	SBR	BB/DN/AS		BB/DN/AS	BB/DN/AS BB/DN/AS BB/DN/AS	BB/DN/AS	
Receiving water	1	OSTER		ZUR OSTER OSTER		LAUTENBA OSTER		HOTTENBA	HOTTENBA BETZELBAC BLEISCHBA	BLEISCHBA	
			J	Constructed Wetlands Data	Vetlands Da	ata					
Area	m²	3630	1050	210	2135	2720	2275	820	375	330	13,545
Length	E	99	30	21	61	68	65	41	25	22	
Width	E	55	35	10	35	40	35	20	15	15	
Filterbody	m³	2360	683	137	1388	1768	1479	533	244	215	8,804
Volume: Sand	m³	2006	580	116	1180	1503	1257	453	207	182	7,484
Volume: WOW _{Char}	۳.	354	102	20	208	265	222	80	37	32	1,321
Amount of WOW _{Char}	kg	530,888	153,563	30,713	312,244	397,800	332,719	119,925	54,844	48,263	1,980,956
Investment costs											
without WOW _{char}											
production costs	€	2,050,801	1,387,483	835,703		1,735,055 1,872,587 1,770,117	1,770,117	1,283,525	1,003,166	963,573	12,902,010€
Transport costs											
WOW _{Char}	Ð	4,202	936	215	1,385	1,736	728	827	491	441	10,960€
Transport costs											
Cellulose	£	1						1			20,953 €
Total investment costs											
of constructed											
wetland	÷	2,585,890	1,541,981	866,631	2,048,683	2,048,683 2,272,123	2,103,564 1,404,277	1,404,277	1,058,500	1,012,276	14,914,879€
Average filter velocity m/h	m/h	0.013	0.011		0.008	0.012	0.008	0.008			
Average Hydraulic Volume Rate	L/(m ² ·d)	323.967	274.286		199.130	282.353	199.705	1			

Table 13: Design constructed wetlands with $WOW_{Biochar}$ for variant 2 ____

3.3.2 Implementation of fine sieves on larger STPs

Due to the higher demand for WOW_{biochar} compared to variant 1, 6 STPs are equipped with a cellulose recovery system. This results in an annual cellulose amount of 711 t/a respective 284 t/a WOW_{Biochar} (see Table 6 and Table 14). With this amount of WOW_{Biochar}, the selected STPs can be equipped with constructed wetlands for micro pollution elimination within 7 years (see Table 15).

Table 14: Total	production	per vear	for	Variant 2
10.010 2 11 10 001	p. 0 0 0 0 0 0 0 0 0	pc. , co	,	

WOW _{Biochar}	kg/a	284.338
Straw-Amount	t/a	710,845
Cellulose-Amount	t/a	710,845
The ammount to		
be pyrolyzed		
(Straw + Cellulose)	t/a	1.422

Table 15: Time schedule for variant 2 for the implementation of constructed wetlands with WOW_{biochar}

Year	kg WOW _{Char} (Cell.+S	Straw)			
		Haupersweiler			
1	284,338				
2	284,338	530,888			
		Leitersweiler	Saal		
3	322,127	119,925		153,563	
		Fürth			
4	332,977	312,244			
		Grügelborn	Hoof		Werschweiler
5	305,072	48,263		54,844	30,713
		Lautenbach			
6	455,591	397,800			
		Hangard			
7	342,129	332,719			

3.3.3 Logistic WOW_{biochar}

The following logistic must be taken into account for the production and installation of the WOW_{biochar}:

- Transport of the cellulose from the STPs with cellulose recovery to the pyrolysis plant.
- Transport of the WOW_{biochar} to the small STPs for the construction of the constructed wetlands

For the location of the pyrolysis plant, the industrial area near STP Ottweiler was chosen. This site is centrally located in selected sub-catchment area, which allows short transport distances and times. In the calculation, the specific transport costs for the cellulose as well as for the WOW_{biochar} of $10 \notin/(truck \cdot km)$ and a loading quantity of a motor vehicle of 25 t/truck were assumed. This results in transport costs of 20,953 \notin for the cellulose and 10,960 \notin for the WOW_{biochar} (see Table 16 and Table 17).

Table 16: Transport cost of cellulose and WOW_{biochar} for variant 2

	١	Variant 2				
Transport of cellu	lose from	large KA to	owards th	e pyrolysis plant		
(location:	Industrial	area near	WWTP O	ttweiler)		
from			€/a	to		
Haupersweiler	19	35	382	Ottweiler		
Sinnerthal	8	111	416	Ottweiler		
St.Wendel	10	224	892	Ottweiler		
Bliesen	16 0 1,132 Ottweiler					
Ottweiler	0	82	0	Ottweiler		
Wiebelskirchen	3	104	172	Ottweiler		
Sum 2,993						
Total transport c	osts for re	covered c	ellulose o	n large WWTPs		
with corre	esponding	construct	ion times:	7 years		
			20,953	€		

Table 17: Transport cost of WOW_{biochar} for variant 2

	١	Variant 2		
Transport of cellu	lose from	large KA t	owards th	e pyrolysis plant
(location:	Industrial	area near	WWTP Of	ttweiler)
from			€/a	to
Ottweiler	19	531	4,202	Haupersweiler
Ottweiler	13	154	936	Saal
Ottweiler	11	398	1,736	Lautenbach
Ottweiler	11	31	215	Werschweiler
Ottweiler	11	312	1,385	Fürth
Ottweiler	5	333	728	Hangard
Ottweiler	17	120	827	Leitersweiler
Ottweiler	16	55	491	Hoof
Ottweiler	22	48	441	Grügelborn
Sum			10,960	

3.3.4 Investment cost

Table 18 shows the investment costs and the cost break down for the installation of the nine constructed wetlands with WOW_{biochar} for variant 2. The investment costs without consideration of the WOW_{biochar} production were calculated with the specific area-related investments costs from section 2.4.1. The WOW_{Biochar}-production costs were assumed to be 1000 \notin /t. This results in overall investment costs of 14.9 million \notin . Compared to a conventional constructed wetland, additional costs of 16% are incurred for the production and transport of the WOW_{biochar}.

Table 19 shows the cost composition for cellulose recovery for variant 2. In total 14 fine sieves modules are required on the six STPs. For each STP with cellulose recovery system, a screw press and a switch cabinet have to be considered.

The total investment costs for both the constructed wetlands with $WOW_{biochar}$ and the fine sieves for variant 2 sums up to 19.81 million \in .

Constructed wetlands cost	Capital	Depreciation		Capital		
breakdown	expenditures	period		expenditures		
Variant 2	breakdown in %			breakdown in €		
Earthwork and filters						
installation	45 %	2	5a	5,805,904 €		
Inlet and outlet structures	25 %	4	0a	3,225,502 €		
Sealing	10 %	2	5a	1,290,201€		
Instrumentation and control						
engineering (ICE)	10 %	1	0a	1,290,201 €		
Plants	5 %	2	5a	645,100€		
Rest	5 %	1	0a	645,100€		
WOW _{Char} including transport						
costs	16%	2	5a	2,012,870 €		
Sum	116%	.6% 14,914,879				
spezif. cost CWetl.		931 €/m				
spezif. cost inkl. WOW _{Char}	1,076 €/m					

Table 18: Cost breakdown of constructed wetlands for variant 2

Table 19: Cost breakdown of cellulose fine sieves for variant 2

	Cellulose finesieve cost breakdown									
Pos.	Name	Depreciation period (year)	Preis (€)	Amount	Total (€)					
1	Cellulose Screen	15	100,000	14	1,400,000					
2	Cellulose scrubber	15	35,000	14	490,000					
3	Screw press	15	40,000	6	240,000					
	Instrumentation and control engineering (ICE): 15% Machine									
4	technology	15	319,500		319,500					
	Integration: 50% total									
5	costs				2 , 449 , 500					
	Total				4,899,000					

3.4 Summary of the case study: Saarland

3.4.1 Impact on water quality

Figure 11 shows the balanced diclofenac concentration along the flow path of the river Oster for the current status and for the two variants. For the two variants, an elimination rate of 80 % for the parameter diclofenac was assumed for the STPs with constructed wetlands with WOW_{biochar} (see chapter 2.2). With the integration of a micropollutant elimination stage at only three STPs, the quality criteria of the EQS can be met almost over the entire flow path. In variant 2, the diclofinac concentration can be reduced to below 35 ng/l and is well below the quality criteria of the EQS.

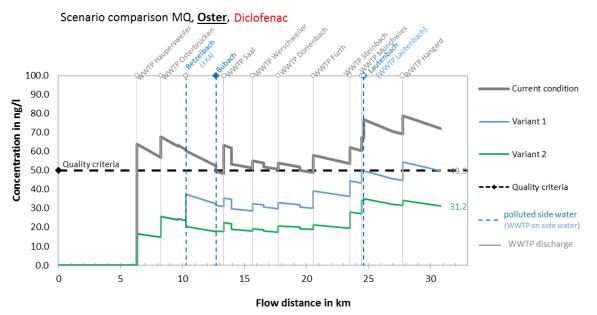
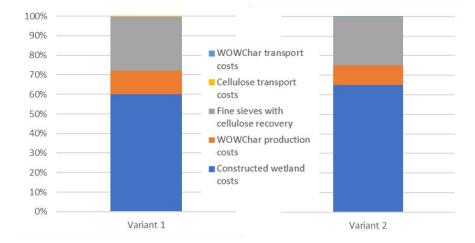


Figure 11: Concentration profile of River Oster for Diclofenac (modified) (Schmitt et al., 2019) for the current condition, for variant 1 and variant 2


3.4.2 Cost comparison

The total investment costs for variant 1 and variant 2 are shown in Table 20. The costs for variant 2 with 9 constructed wetlands are twice as high as for variant 1. A comprehensive integration of constructed wetlands is therefore not recommended.. The integration of micropollutant removal stages should take place at STPs with the greatest impact on the water body. The integration of fine sieves should be implemented at STPs that are overloaded or where additional p.e. are to be connected. This results in cost advantages, as an enlargement of the STP plant can be dispensed by integrating fine sieves. The costs for constructed wetlands account for 60% of the total costs. The transport costs have only a minor share of the total investment costs if the pyrolysis plant is located close to the catchment area.

Table 20: Total investment costs for variant 1 and variant 2

Investment costs	Variant 1	L	Variant 2		
Constructed wetland costs	5.310.871€	59,9%	12.902.010€	65,1%	
WOW _{Char} production costs	1.082.250€	12,2%	1.980.956€	10,0%	
Fine sieves with cellulose recovery	2.449.500€	27,6%	4.899.000€	24,7%	
Cellulose transport costs	13.519€	0,2%	20.953€	0,1%	
WOW _{Char} transport costs	6.874€	0,1%	10.960€	0,1%	
Total	8.863.014€	100%	19.813.879€	100%	

4 Ireland

4.1 Description of the catchment area

To assess the impact of constructed wetlands with WOW_{biochar} on water quality in a catchment in Ireland, a typical region in the south-east of Ireland was selected with one large STP (Kilkenny STP) and many small STPs. Only STPs located within approximately 20 kilometres of the town of Kilkenny and with more than 500 connected residents were considered. On the Kilkenny STP with 35,643 connected residents, the cellulose recovery system was installed. On the other STPs, constructed wetlands with WOW_{biochar} for micro-pollutant elimination were installed.

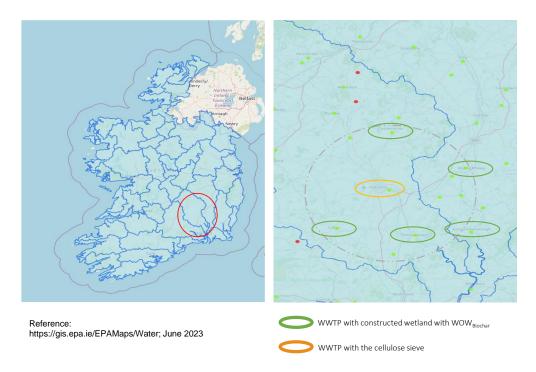


Figure 12: Catchment area in the south-east of Ireland

4.2 Implementation of fine sieves on larger STPs

9 STPs are extended with constructed wetlands with WOW_{biochar}. 26,707 p.e. are connected to the 9 STPs. The filter area was determined using a specific area of 0.4 m²/p.e., as no data on the sewage water volume was available. Table 21 summarises the input data and results. The required surface area sums up to 11,000 m² for the 9 STPs and a required WOW_{biochar}-quantity of 1,107 tonnes. Detailed information on implementation is summarised in the fact sheets for each STP in the Annex.

WWTP	unit	Graignuenama	Callan	Thomastown	Castlecomer	Muinebheag	Ballyragget	Paulstown	Gowran	Goresbridge	Sum
Input Data											
Connected PE	PE	2,267	2,247	3,522	2,077	12,248	1,920	1,000	826	600	26,707
Annual flow	m³/a	0	0	0	0	466,470	0	0	C	0	
Waste water flow to											
constructed wetland	m³/a	0	0	0	0	373,176	0	0	C	0	
				Wet	lands Data						
Area	m²	920	900	1,420	840	5,160	780	400	340	240	11,000
Length	m	46	45	71	42	86	39	16	17	12	374
Width	m	20	20	20	20	60	20	25	20	20	225
Filterbody	m ³	598	585	923	546	3,354	507	260	221	156	7,150
Volume: Sand	m³	508	497	785	464	2,851	431	221	188	133	6,078
Volume: WOW _{Char}	m³	90	88	138	82	503	76	39	33	23	1,073
Amount of WOW-Biochar											
(50% straw/cellulose)	kg	134,550	131,625	207,675	122,850	754,650	114,075	58,500	49,725	35,100	1,351,350
→ Amount of straw	kg	336,375	329,063	519,188	307,125	1,886,625	285,188	146,250	124,313	87,750	
Investment costs without											
WOW _{Char} production costs	€	1,330,902	1,321,719	1,525,892	1,293,305	2,291,066	1,263,463	1,023,769	972,677	871,604	11,894,397
Transport costs WOW _{Char}	€	1,511	1,270	1,539	1,059	7,129	1,080	521	313	413	12,509
Transport costs Cellulose	€	-	-	-	-	-	-	-	-	-	50,569
Total investment costs of											
constructed wetland	€	1,330,902	1,321,719	1,525,892	1,293,305	2,291,066	1,263,463	1,023,769	972,677	871,604	11,944,966
Average filter velocity	m/h	0.000	0.000	0.000	0.000	0.008	0.000	0.000	0.000	0.000	
Maximum Hydraulic Volume											
Rate	L/(m²·d)	0.000	0.000	0.000	0.000	198.140	0.000	0.000	0.000	0.000	

Table 21: Design constructed wetlands with WOWBiochar for a catchment area in Irland

4.3 Implementation of fine sieves on larger STPs

To determine the amount of cellulose, a specific cellulose content in the wastewater of 0.0317 kg/p.e./d was used according to (WOW, 2019). Since the WOW_{Biochar} is produced from a cellulose-straw mixture, the amount added to the pyrolysis is twice as large. The pyrolysis and biological activation processes result in high feedstock losses, and the total yield of activated WOW_{Biochar} is 20%. For cellulose recovery STP Kilkenny was chosen (see Table 22). This results in an annual cellulose amount of 412 t/a respective 165 t/a WOW_{Biochar} (see Table 23). With this amount of WOW_{Biochar}, the selected STPs can be equipped with constructed wetlands for micro pollution elimination within 9 years (see Table 24).

Table 22: Selected STP for fine sieve installation for a catchment area in Irland

Name	Connected PE	Annual flow m³/a	Primary clarifier yes / no	Digester yes / no	Finesieve Anzahl	Cellulose Amount kg/d	WOW _{Biochar} Amount kg/d
Kilkenny City Waste Water			100100	100100	-		
Treatment plant	35,643	3,523,345	no	-	4	1130	452

Table 23: Total production per year for a catchment area in Irland

WOW _{Biochar}	kg/a	164,963
Straw-Amount	kg/a	412,407
Cellulose-Amount	kg/a	412,407

Table 24: Time schedule for the implementation of constructed wetlands with WOW_{biochar} for a catchment area in Irland

Year		kg W	OWBiochar (Cell.+S	traw)	
		Muinebheag			
1	164,963				
2	164,963				
3	164,963				
4	164,963				
5	164,963	754,650			
		Thomastown			
6	235,128	207,675			
		Callan			
7	192,416	131,625			
		Castlecomer			
8	225,753	122,850			
		Ballyragget	Paulstown	Gowran	Goresbridge
9	267,866	114,075	58,500	49,725	35,100

4.4 Logistic WOW_{biochar}

The following logistic must be taken into account for the production and installation of the WOW_{biochar}:

- Transport of the cellulose from the STPs with cellulose recovery to the pyrolysis plant.
- Transport of the WOW_{biochar} to the small STPs for the construction of the constructed wetlands

It was assumed that the site for the pyrolysis plant would be an industrial area near the Kilkenny STP. This avoids the costs of transporting the cellulose. In the calculation, the specific transport costs for the cellulose as well as for the WOW_{biochar} of $10 \notin/(truck \cdot km)$ and a loading quantity of a motor vehicle of 25 t/truck were assumed. This results in transport costs of 50,569 \notin for the cellulose (see Table 25).

· · · · · · · · · · · · · · · · · · ·									
Variant 1									
Transport of cellulose from large KA towards the pyrolysis plant									
(locatio	(location KA Ottweiler)								
from €/a to									
Muinebheag		1,378	Kilkenny City						
Thomastown		341	Kilkenny City						
Callan		428	Kilkenny City						
Castlecomer		210	Kilkenny City						
Graignuenamanagh Tinnahinch		504	Kilkenny City						
Ballyragget		215	Kilkenny City						
Paulstown		174	Kilkenny City						
Gowran		156	Kilkenny City						
Goresbridge		206	Kilkenny City						
Sum		3,612							
Total transport costs for reco	vered cellulos	e on large W	/WTPs with						
correspondin	ig constructio	n times							
		50,569	€						

4.5 Investment cost

Table 26 shows the investment costs and the cost break down for the installation of nine constructed wetlands with WOW_{biochar}. The investment costs without consideration of the WOW_{biochar} production were calculated with the specific area-related investments costs from section 2.4.1. The WOW_{Biochar}-production costs were assumed to be $1000 \notin$ /t. This results in overall investment costs of 13.5 million \notin . Compared to a conventional constructed wetland, additional costs of 14% are incurred for the production and transport of the WOW_{biochar}.

Table 27 shows the cost composition for cellulose recovery on the STP Kilkenny. In total 4 fine sieves modules, a screw press and a switch cabinet have to be considered.

The total investment costs for both the constructed wetlands with WOW_{biochar} and the fine sieves sums up to 14.8 million €.

Constructed wetlands	Capital expenditures	Depreciation period	Capital expenditures
cost breakdown	breakdown in %		breakdown in €
Earthwork and filters			
installation	45 %	25a	5,352,479€
Inlet and outlet structures	25 %	40a	2,973,599€
Sealing	10 %	25a	1,189,440€
Instrumentation and			
control engineering (ICE)	10 %	10a	1,189,440€
Plants	5 %	25a	594,720€
Rest	5 %	10a	594,720€
WOW _{Char} including			
transport costs	14%	25a	1,608,750€
Sum	114%		13,503,147€
spezif. cost CWetl.			445 €/m²
spezif. cost inkl. WOW _{Char}			506 €/m²

Table 26: Cost breakdown of constructed wetlands for a catchment area in Irland

Table 27: Cost breakdown of cellulose fine sieves for a catchment area in Irland

	Cellulose finesieve cost breakdown									
		Depreciation								
Pos.	Name	period (year)	Preis (€)	Amount	Total (€)					
1	Cellulose screen	15	100,000	4	400,000					
2	Cellulose scrubber	15	35,000	4	140,000					
3	Screw press	15	40,000	1	40,000					
	Instrumentation and									
	control engineering (ICE):									
4	15% Machine technology	10	87,000	1	87,000					
5	Installation: 50% total cost				667,000					
	Total				1,334,000					

5 Scotland

5.1 Description of the catchment area

For this case study, the whole of Scotland was considered rather than a single catchment area.. To simplify the analysis, Scotland was divided into 4 regions:

- Region 1 (blue): north
- Region 2 (purple): central on the eastern coast
- Region 3 (orange): densely populated area between Glasgow and Edinburgh
- Region 4 (green): south and on the western coast.

Figure 13 shows the STPs and how they are allocated to the regions. For each region, the diclofenac reduction is calculated if all plants with less than 5,000 p.e. are extended with a constructed wetland with WOW_{biochar}.



Figure 13: Distribution of the STP in Scotland in Scotland, divided into 4 regions. Region 1- blue, Region 2- purple, Region 3- orange, Region 4- green

5.2 Implementation of constructed wetlands with WOW_{biochar} at small STPs

The installation of a constructed wetland with WOWbiochar was only considered for WWTPs with a connected population of 5000 p.e. or less. Since there was only information about the number of

connected inhabitants and no water quantities were available, a specific area of 0.4 m²/p.e. was used for the calculation of the filter area (see also chapter 2.3). All other characteristic values, such as filter layer depth, $WOW_{biochar}$ -density etc. were taken from chapter 2.3

For the calculation of the diclofenac load, the specific diclofenac load of 0.78 mg/p.e.*d from (Schmitt, 2019) was used. For the determination of the reduction amounts, the treatment efficiency of 26.45% and 80% was assumed for a conventional STP and STP with constructed wetlands with WOW_{biochar}, respectively.

5.3 Implementation of fine sieves on larger STPs

For a preliminary assessment, the following locations were chosen for the installation of a cellulose recovery plant (see also Figure 14):

- Region 1: STP Allanfearn and Persley
- Region 2: STP Perth city
- Region 3: STP East Calder
- Region 4: STP Meadowhead

Detailed data on the individual sites would be required for an accurate site selection. For the pyrolysis plant, a site close to the STP with a cellulose recovery plant was chosen. This avoided the cost of transporting cellulose to a pyrolysis plant.

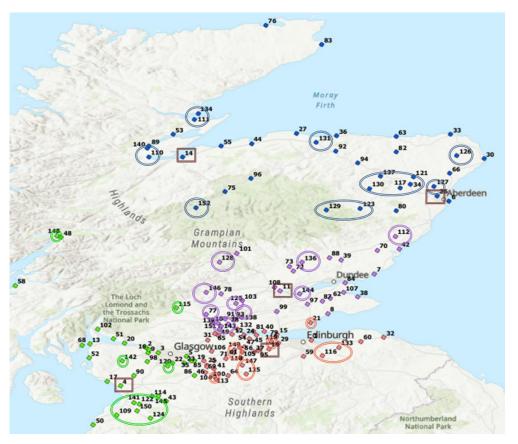


Figure 14: Selected locations of STP for different regions in Scotland where the constructed wetlands with WOW_{biochar} could be installed (circles) and selected STP for cellulose recovery (squares)

5.4 Investment costs

Table 28 shows the proportion of wastewater treatment plants that are equipped with a constructed wetland with WOW_{biochar}, broken down by region. It also shows the duration of expansion and the investment costs for these plants. The constructed wetland accounts for the largest share of the costs. The transport costs, on the other hand, account for only a very small share of the total costs, less than 1%.

	Share of WWTP (load entering < 5000 PE) that could be expanded by RSF [%]	time	Total cost (Filter+WOW _{Bio} _{char} +Transport) [€]		WOW _{char.} Costs [%]		Filter costs [%]	Transport costs [€]	Transport costs [%]
REGION 1	39%	11	23,917,875€	2,819,261€	11.79%	21,050,123 €	88.01%	48,491€	0.20%
REGION 2	29%	4	16,063,112 €	1,719,315 €	10.70%	14,306,066 €	89.06%	37,731€	0.23%
REGION 3	21%	4	15,175,986 €	1,756,170 €	11.57%	13,395,278 €	88.27%	24 , 538 €	0.16%
REGION 4	31%	2	18,530,290 €	2,148,413€	11.59%	16,336,015 €	88.16%	45,863€	0.25%

Table 28: Investment cost of constructed wetlands with $WOW_{biochar}$ in Scotland

5.5 Impact on water quality

Figure 15 shows the potential diclofenac reduction for each regions and for Scotland as a whole that can be achieved with the integration of constructed wetlands with WOW_{biochar}. In Region 1, which is characterised by smaller STPs, the theoretically possible reduction is 5 %. The total reduction for Scottland is only 2 %. The low impact on the total pollutant reduction is due to the fact that the small STPs (< 5,000 p.e.) only have a low share of 2.5 % compared to other size classes in Scotland (see Figure 16). Although the overall impact is very low, the improvement which could be achieved at small river catchment areas could be of relevance.

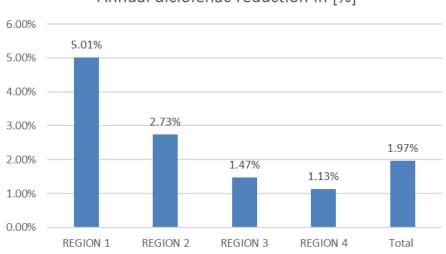


Figure 15: Annual diclofenac reduction in % for Scottland

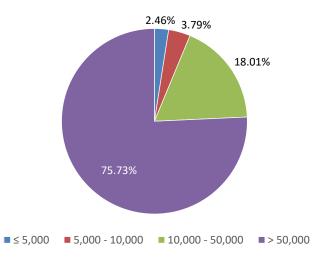


Figure 16: Share of the Diclofenac load in the effluent for Scotland depending on the size of STP in [%]

6 Conclusions

The case studies show that the combination of cellulose recovery with fine sieves in order to provide $WOW_{Biochar}$ for constructed wetlands for micro pollutant removal in a river catchment is possible. Although the load reduction from small STP in comparison to the whole load from all STP in the catchment is small, the impact on the river quality for small receiving water bodies is high. For implementation further investigation into hydraulic load and invest costs is necessary.

7 References

ATV-DVWK·A 198. (2003). Arbeitsblatt ATV-DVWK·A 198. Vereinheitlichung und Herleitung von Bemessungswerten für Abwasseranlagen. Hennef: DWA Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e. V.

Brunsch, A. F., Laak, T. L., Christoffels, E., Rijnaarts, H. H., & Langenhoff, A. A. (2018). Retention soil filter as post-treatment step to remove micropollutants from sewage treatment plant effluent. Science of the Total Environment, 1098–1107.

Brunsch, A., Beyerle, L., Knorz, K., Brepols, C., Dahmen, H., Christoffels, E., & Schäfer, H. (2020). Retentionsbodenfilter zur Entfernung von Mikroschadstoffen aus Mischwasserabschlägen und Kläranlagenablauf. a Korrespondenz Abwasser, Abfall 2020 (67) Nr. 10, 780-788.

Christoffels, E.; Mertens, F. M.; Kistemann, T. and Schreiber, C. (2014). Retention of pharmaceutical residues and microorganisms at the Altendorf retention soil filter. IWA Publishing 2014 Water Science & Technology | 70.9 | 2014, 1503-1509.

DWA-A 131. (2016). Arbeitsblatt DWA-A 131 Bemessung von einstufigen Belebungsanlagen. Hennef: DWA Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e. V.

DWA-A 262 (2006). Arbeitsblatt DWA-A 262 Grundsätze für Bemessung, Bau und Betrieb von Pflanzenkläranlagen mit bepflanzten Bodenfiltern zur biologischen Reinigung kommunalen Abwassers. Hennef. Deutschland: Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e. V.

Grotehusmann, M. U. (2015). Retentionsbodenfilter. Handbuch für Planung, Bau und Betrieb. aktualisierte 2. Auflage. Düsseldorf: Ministerium für Klimaschutz, Umwelt, Landwirtschaft, Natur- und Verbraucherschutz des Landes Nordrhein-Westfalen (MKULNV).

KOM-M.NRW (2016): Anleitung zur Planung und Dimensionierung von Anlagen zur Mikroschadstoffelimination. Hrsg.: ARGE Kompetenzzentrum Mikroschadstoffe.NRW, Köln, 2. Auflage, Stand 01.09.2016.

Ruiken, C.J., Breuer, G. Klaversma, E., Santiago, T., van Loosdrecht, M.C.M. (2013): Sieving wastewater – cellulose recovery, economic and energy evaluation. Water research 47 (1), S. 43-48. DOI:10.1016/j.watres.2012.08.023

Schmitt, T.G.; Knerr, H.; Valerius, B.; Kolisch, G. und Taudien, Y. (2019): "Stoffflussmodellierung der Gesamtemissionen an Spurenstoffen im Einzugsgebiet der Blies und Übertragung der Ergebnisse auf das Saarland", Studie im Auftrag des Entsorgungsverband Saar (EVS).

Venditti, S.; Kiesch, A.; Brunhoferova, H.; Schlienz, M.; Knerr, H.; Dittmer, U.; Hansen, J. (2022a): Assessing the impact of micropollutant mitigation measures using vertical flow constructed wetlands for municipal wastewater catchments in the greater region: a reference case for rural areas. Water Science & Technology Vol 00 No 0, 1 doi: 10.2166/wst.2022.191

Venditti, S.; Brunhoferova, H; Hansen, J. (2022b): Behavior of 27 selected emerging contaminants in vertical flow constructed wetlands as post-treatment for municipal wastewater. January 2022The Science of The Total Environment 819(9):153234. DOI:10.1016/j.scitotenv.2022.153234

Venditti, S.; Salmerón, I.; Hansen, J. (2023): Use of WOW-AC in Pilot-scale demonstration plant for MPelimination from real wastewater. Report WOW!-Project.

WOW (2019): WPT1 Designing value chains for carbon based elements from wastewater A1 STATE OF THE ART REPORT

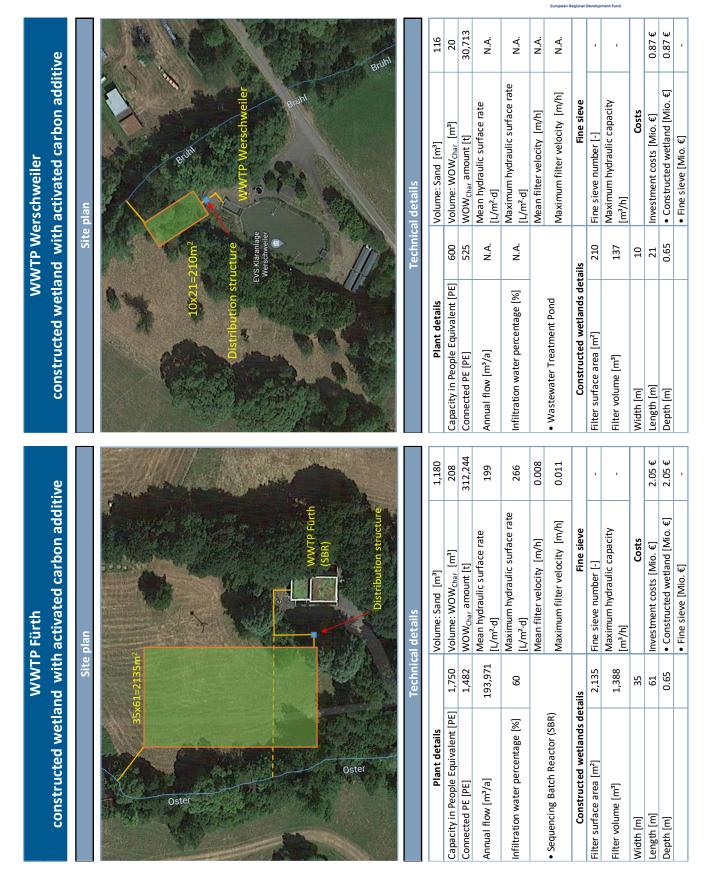
https://vb.nweurope.eu/media/20580/wpt1_wow-state-of-the-art-report.pdf

WOW - Cellulose team (2022): Report on the production of biochar (activated carbon), bio-oil and pyroligneous acid from cellulose)

https://vb.nweurope.eu/media/17026/deliverable_3_1_wow_cellulose-final-report-3-march-2022.pdf

8 Abbreviations

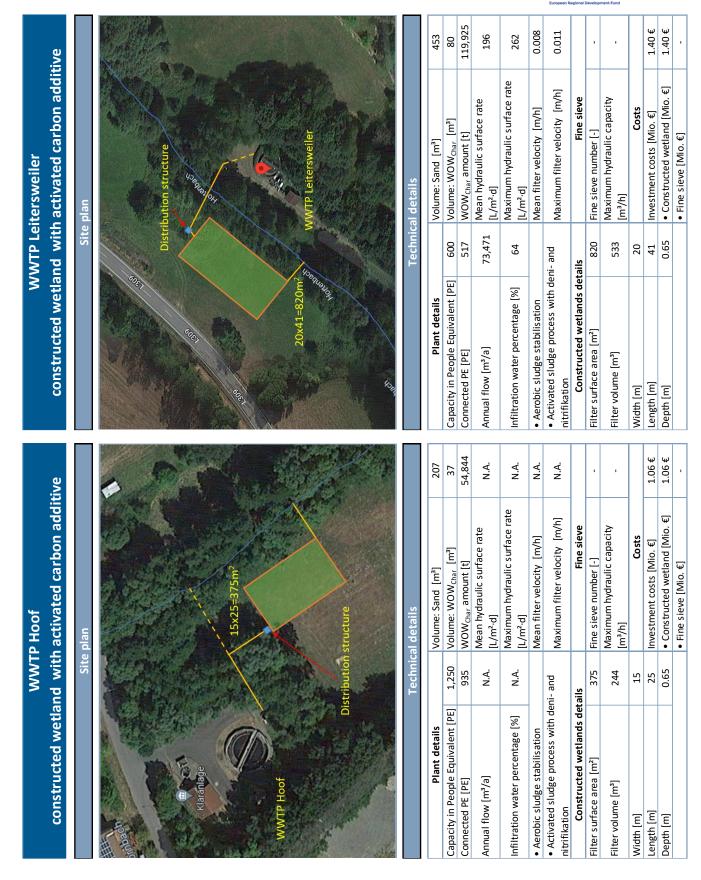
p.e.	People equivalent
STP	Wate water treatment plant
COD	Chemical oxygen demand
WOW _{Biochar}	Biochar produced from 50% straw and 50% cellulose
BB	Activated sludge srocess
DN	Denitrification/ Nitrification
AS	Aerobic sludge stabilisation
BT	Wastewater treatment pond
STK	Submerged rotary body
EVS	Entsorgungsverband Saar
MQ	Mean flow rate



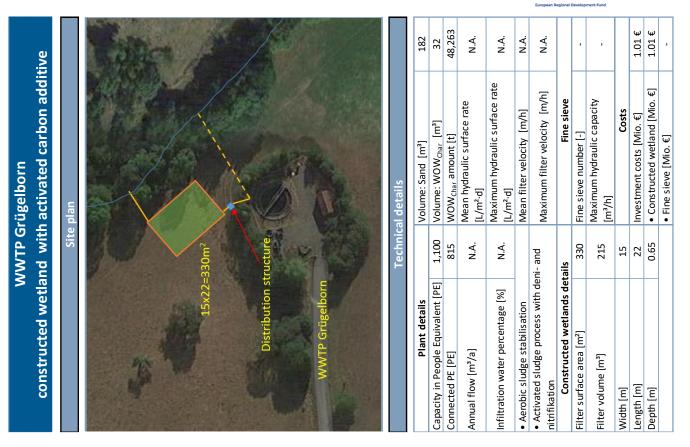
9 Appendix

9.1 Steckbriefe Saarland

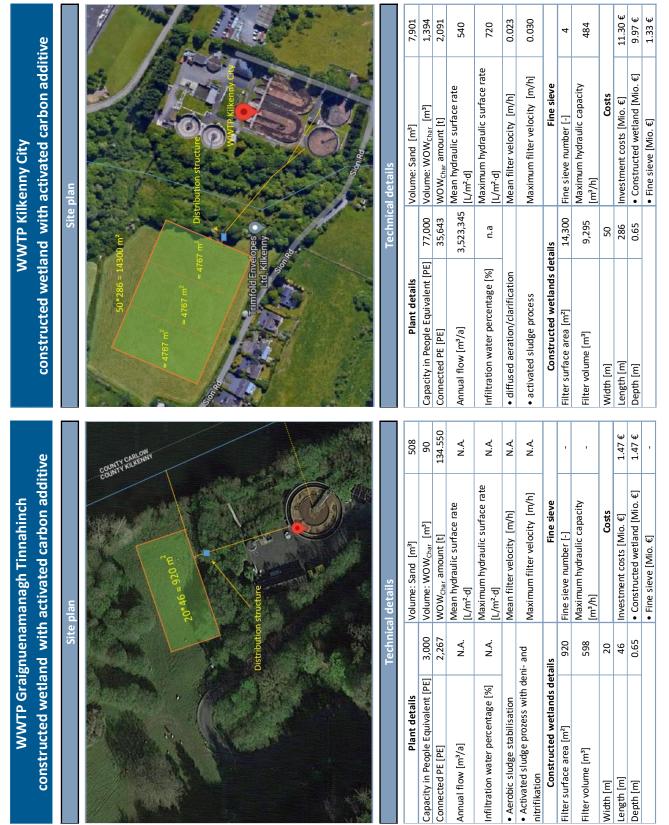
			Site 7	Site plan	
					weiler
		Cu gg	1810 m ²	Diana Distribution structure	weiler
Technical details			Technica	echnical details	
Plant details Volume: Sand [m ³]	¹³] 580	Plant details	-	Volume: Sand [m ³]	2,006
[PE] 1.900 Volume: WOWChar, [m ³]		Capacity in Peop	4,000	Volume: WOW _{char} [m ³]	354
1,632 WOW _{char} amount [t]	11		3,033	WOW _{Char} amount [t]	531
204,633 [LL/m ² -d]	urface rate 274	t Annual flow [m ³ /a]	714,102	Mean hydraulic surface rate [L/m².d]	324
n hydraulic surface rate	llic surface rate 518	3 Infiltration water percentage [%]	75	Maximum hydraulic surface rate [L/m²-d]	529
Mean filter velocity [m/h] 0.	ity [m/h] 0.011	 Aerobic sludge stabilisation 		Mean filter velocity [m/h]	0.013
Wastewater Treatment Pond Maximum filter velocity [m/h] 0	elocity [m/h] 0.022	Activated sludge process with deni- and nitrifikation		Maximum filter velocity [m/h]	0.022
Constructed wetlands details Fine sieve	Fine sieve	Constructed wetlands details	letails	Fine sieve	
Filter surface area [m ²] 1,050 Fine sieve number [-]	er [-]	Filter surface area [m ²]	3,630	Fine sieve number [-]	2
Filter volume $[m^3]$ 683 Maximum hydraulic capacity $[m^3/h]$	llic capacity -	Filter volume [m³]	2,360	Maximum hydraulic capacity [m³/h]	484
Width [m] 35 Costs	Costs	Width [m]	55	Costs	
Length [m] 30 Investment costs [Mio. €] 1.	[Mio. €] 1.54 €	€ Length [m]	99	Investment costs [Mio. €]	3.29 €
Depth [m] 0.65 ● Constructed wetland [Mio. €] 1.	etland [Mio. €] 1.54 €	€ Depth [m]	0.65	 Constructed wetland [Mio. €] 	2.59€
 Fine sieve [Mio. €] 	. €] -			• Fine sieve [Mio. €]	0.71€


	Technic	Technical details		
Plant details		Volume: Sand [m ³]	1,257	
Capacity in People Equivalent [PE]	2,400	Volume: WOW _{Char} [m ³]	222	Capacity in Pe
Connected PE [PE]	1,806	WOW _{Char} amount [t]	332,719	Connected PE
Annual flow [m³/a]	207,288	Mean hydraulic surface rate [L/m²·d]	200	Annual flow [r
Infiltration water percentage [%]	62	Maximum hydraulic surface rate [L/m²·d]	266	Infiltration wa
 Aerobic sludge stabilisation 		Mean filter velocity [m/h]	0.008	 Aerobic slud
 Activated sludge process with deni- and nitrifikation 	ni- and	Maximum filter velocity [m/h]	0.011	 Activated slu nitrifikation
Constructed wetlands details	tails	Fine sieve		Const
Filter surface area [m²]	2,275	Fine sieve number [-]		Filter surface
Filter volume [m ³]	1,479	Maximum hydraulic capacity [m³/h]	ı	Filter volume
Width [m]	35	Costs		Width [m]
Length [m]	65	Investment costs [Mio. €]	2.10€	Length [m]
Depth [m]	0.65	 Constructed wetland [Mio. €] 	2.10€	Depth [m]
		 Fine sieve [Mio. €] 	ı	

WWTP Lautenbach constructed wetland with activated carbon additive



	Technic	Technical details	
Plant details		Volume: Sand [m ³]	1,503
Capacity in People Equivalent [PE]	3,500	Volume: WOW _{Char} [m ³]	265
Connected PE [PE]	3,118	WOW _{Char} amount [t]	397,800
Annual flow [m³/a]	235,991	Mean hydraulic surface rate [L/m²·d]	282
Infiltration water percentage [%]	35	Maximum hydraulic surface rate [L/m²·d]	529
 Aerobic sludge stabilisation 		Mean filter velocity [m/h]	0.012
 Activated sludge process with deni- and nitrifikation 	ni- and	Maximum filter velocity [m/h]	0.022
Constructed wetlands details	ails	Fine sieve	
Filter surface area [m²]	2,720	Fine sieve number [-]	
Filter volume [m³]	1,768	Maximum hydraulic capacity [m³/h]	ı
Width [m]	40	Costs	
Length [m]	68	Investment costs [Mio. €]	2.27€
Depth [m]	0.65	 Constructed wetland [Mio. €] 	2.27€
		 Fine sieve [Mio. €] 	•



9.2 Steckbriefe Irland

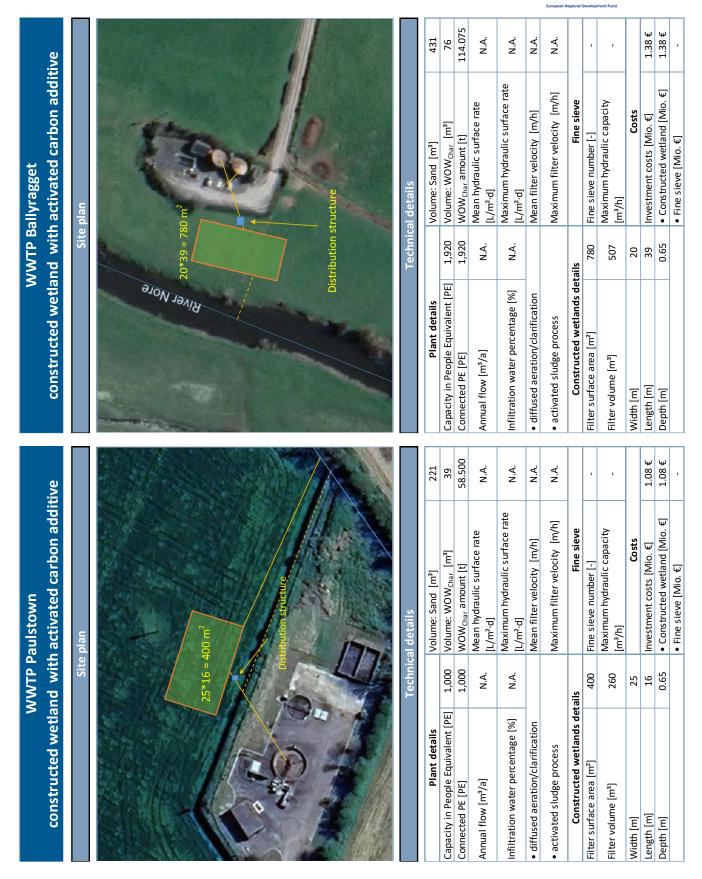
Site plan

River Kings

	Technic	Technical details			Technic	Technical details	
Plant details		Volume: Sand [m ³]	785	Plant details		Volume: Sand [m ³]	497
Capacity in People Equivalent [PE]	7,500	Volume: WOW _{Char} [m ³]	138	Capacity in People Equivalent [PE]	4,000	Volume: WOW _{Char} [m ³]	88
Connected PE [PE]	3,522	WOW _{Char} amount [t]	208	Connected PE [PE]	2,247	WOW _{Char} amount [t]	131.625
Annual flow [m³/a]	N.A.	Mean hydraulic surface rate [L/m²-d]	N.A.	Annual flow [m³/a]	N.A.	Mean hydraulic surface rate [L/m²-d]	N.A.
Infiltration water percentage [%]	N.A.	Maximum hydraulic surface rate [L/m²-d]	N.A.	Infiltration water percentage [%]	N.A.	Maximum hydraulic surface rate [L/m²·d]	N.A.
 diffused aeration/clarification 		Mean filter velocity [m/h]	N.A.	 diffused aeration/clarification 		Mean filter velocity [m/h]	N.A.
 activated sludge process 		Maximum filter velocity [m/h]	N.A.	 activated sludge process 		Maximum filter velocity [m/h]	N.A.
Constructed wetlands details	ails	Fine sieve		Constructed wetlands details	ails	Fine sieve	
Filter surface area [m²]	1,420	Fine sieve number [-]	•	Filter surface area [m²]	006	Fine sieve number [-]	•
Filter volume [m³]	923	Maximum hydraulic capacity [m³/h]	ı	Filter volume [m³]	585	Maximum hydraulic capacity [m³/h]	,
Width [m]	20	Costs		Width [m]	20	Costs	
Length [m]	71	Investment costs [Mio. €]	1.73€	Length [m]	45	Investment costs [Mio. €]	1.45 €
Depth [m]	0.65	 Constructed wetland [Mio. €] 	1.73€	Depth [m]	0.65	 Constructed wetland [Mio. €] 	1.45 €
		 Fine sieve [Mio. €] 	,			 Fine sieve [Mio. €] 	

WWTP Callan

Site plan


Eds Cafe

