

Trial Site Audit Summary Report

PHASE 2 NIKLAS JOHN July 2023

Trial Site Audit Summary Report

PHASE 2

Author:	Niklas John	Organisation:	Arcadis
Checker:	Jermaine Bernard		
Approver:	Andrew Gifford		
Report No:	10031024-00537		
Work Packag	e: Long Term LT		
Date:	July 2023		

Version Control

Version Number	Date issued	Author	Checker	Approver	Changes
P1	07.07.2023	N John	J Bernard	A Gifford	DRAFT FOR COMMENT
P2	25.07.2023	N John	J Bernard	A Gifford	CLIENT COMMENTS

Content

Ve	ersion Co	ntrol	i
Сс	ontent		2
AŁ	breviatio	ons	5
Sy	mbols &	Units	6
1	Introdu	ıction	7
2	Canal a	and River Trust Audit Findings	9
	2.1 Cae	en Hill Pumping Station	9
	2.1.1	Description	9
	2.1.2	Phase 1 Identified Possible Improvements	9
	2.1.3	Phase 2 Investigations and Actions	10
	2.1.4	Phase 2 Energy Assessment	11
	2.2 See	end Pumping Station	12
	2.2.1	Description	12
	2.2.2	Phase 1 Identified Possible Improvements	12
	2.2.3	Phase 2 Investigations and Actions	13
	2.3 Tin	sley Pumping Station	14
	2.3.1	Description	14
	2.3.2	Phase 1 Identified Possible Improvements	14
	2.3.1	Phase 2 Investigations and Actions	15
	2.3.2	Phase 2 Energy Assessment	15
	2.4 Cal	cutt Pumping Station	17
	2.4.1	Description	17
	2.4.2	Phase 1 Identified Possible Improvements	17
	2.4.3	Phase 2 Investigations and Actions	18
	2.4.4	Phase 2 Energy Assessment	18
3	Waterv	vays Ireland Audit Findings	20
	3.1 Leii	nster Aqueduct Pumping Station	20
	3.1.1	Description	20
	3.1.2	Phase 1 Identified Possible Solutions	20

Participation Design & Consultancy for natural and built assets

3.1.3	Phase 2 Investigations and Actions	21
3.1.4	Phase 2 Energy Assessment	21
3.2 Gr	and Canal Locks 16. 17, 18 Pumping Stations	23
3.2.1	Description	23
3.2.2	Possible Improvements	24
3.2.3	Phase 2 Investigations and Actions	25
3.2.4	Phase 2 Energy Assessment	25
3.3 Sh	annon Harbour Locks 35 and 36	26
3.3.1	Description	26
3.3.2	Phase 1 Identified Possible Improvements	27
3.3.3	Phase 2 Investigations and Actions	28
3.3.4	Phase 2 Energy Assessment	28
3.4 Ric	hmond Harbour Pumping Station	30
3.4.1	Description	30
3.4.2	Phase 1 Identified Possible Improvements	31
3.4.3	Phase 2 Investigations and Actions	31
3.4.4	Phase 2 Energy Assessment	31
3.5 Dr	umleague Pumping Station	33
3.5.1	Description	33
3.5.2	Phase 1 Identified Possible Improvements	34
3.5.3	Phase 2 Investigations and Actions	34
3.6 Dr	umshanbo Pumping Station	35
3.6.1	Description	35
3.6.2	Phase 1 Identified Potential Areas for Improvement	36
3.6.3	Phase 2 Investigations and Actions	37
3.6.4	Phase 2 Energy Assessment	37
4 Voies N	Navigables de France Audit Findings	
4.1 Cri	ssey Pumping Station	
4.1.1	Description	
4.1.2	Phase 1 Identified Possible Improvements	39
4.1.3	Phase 2 Investigations and Actions	39
4.1.4	Phase 2 Energy Assessment	39

CARCADIS Design & Consultancy for natural and built assets

	4.2	Bria	are Pumping Station	40
	4.2	.1	Description	40
	4.2	.2	Phase 1 Identified Possible Improvements	40
	4.2	.3	Phase 2 Investigations and Actions	40
	4.3	Sto	ck Pumping Station	41
	4.3	.1	Description	41
	4.3	.2	Phase 1 Identified Possible Improvements	41
	4.3	.3	Phase 2 Investigations and Actions	42
5	VLI	M AL	ıdit Findings	43
6	Pu	mp S	Summary	44
	6.1	Pha	nse 1 Trial Sites	44
7	En	ergy	Assessment	45
	7.1		rgy and Carbon Saving Assessment	
8	Ph		2 Conclusions	
-			A – LRM Pumping Station Assessment Summary for VLM	

CARCADIS Design & Consultancy for natural and built assets

Abbreviations

Abbreviation	Definition
AC	Asbestos Cement
AI	Artificial Intelligence
ΑΡΙ	Automate Programmable Industriel
BEP	Best Efficiency Point
DN	Diamétre Nominal (Nominal Diameter)
FLC	Full Load Current
GPRS	General Packet Radio Service
Green WIN	Greener Waterway Infrastructure
GSM	Global System for Mobile communications
HDPE	High Density Polyethylene
НМІ	Human Machine Interface
HPPE	High Performance Polyethylene
N/A	Not Applicable
NPSH	Net Positive Suction Head
NPSHr	Net Positive Suction Head Required
NRV	Non-Return Valve
NWE	North West Europe
OD	Outside Diameter
PE	Polyethylene
PLC	Programmable Logic Controller
PN	Pression Nominal (Nominal Pressure)
PS	Pumping Station
PVC	Polyvinyl Chloride
PVC-U	Unplasticised Polyvinyl Chloride
SCADA	Supervisory Control and Data Acquisition
SDR	Standard Dimensional Ratio
SME	Small and Medium-sized Enterprise
ТВС	To Be Confirmed
TT	Terre-Terre
UK	United Kingdom
UoL	University of Liège (Université de Liège)
VNF	Voies Navigables de France
VSD	Variable Speed Drive
WI	Waterways Ireland
WMO	Waterway Management Organisation

Symbols & Units

Symbol / Unit	Definition
%	Percent
€	Euro
Α	Ampere (Amp)
CO ₂	Carbon Dioxide
Hz	Hertz
km	Kilometre
kg	Kilogram
kW	Kilowatt
kWh	Kilowatt-hour
I	Litre
m	metre
m ³	Cubic metre
МІ	Megalitre
mm	Millimetre
S	Second

1 Introduction

Project Green WIN is a collaborative project being undertaken by Waterway Management Organisations (WMOs) and partner organisations across North West Europe (NWE) with the aim of addressing excess energy use and high carbon emissions causes. The participating partner organisations are:

- Canal and River Trust, United Kingdom (UK) Lead Partner.
- Waterways Ireland, Ireland.
- Ministerie van Infrastructuur en Waterstaat, Netherlands.
- Université de Liège, Belgium.
- Voies Navigables de France, France.
- Vlaamse Landmaatschappij, Belgium.

The WMOs rely on pumping equipment and systems to keep waterways operational but need to adapt and make this infrastructure more carbon efficient. Cost pressures restrict WMOs from taking such steps. The project will tackle this by jointly trialling such technologies on their behalf and seeking more efficient ways of deploying them. Pumping water has a substantial carbon impact across NWE, accounting for an estimated 25 % to 33 % of WMO's annual electricity use and circa 20 % of total emissions.

The project focuses on waterways in Belgium, France, Ireland, The Netherlands, and UK, which are used for freight and for recreational uses and has three stages:

- 1. Audit current equipment/scope for improvement.
- 2. Pilot technologies and test their potential for adaptation.
- 3. Investment, procurement, and business planning guidelines.

From energy savings, Green WIN aims to demonstrate net changes of 65-tonnes CO₂ equivalent (CO₂e) emissions reduced per annum. Main outputs and pilots will be an infrastructure audit, technology trials, investment, procurement, and business planning guidelines (a Greener Pumping Technologies Toolkit) and an established support network.

Arcadis Consulting (UK) Ltd (Arcadis) have been appointed by The Canal and River Trust (the Trust) as a technical consultant to support the Green WIN project. This report summarises the findings of Phase 2 and improvements at the trial sites as of June 2023 and follows the Phase 1 stage which focussed on audits of the current equipment at the nominated trial sites, and potential scope for improvement.

Further details of particular site assessments can be found on the site-specific audit assessment reports provided in Table no. 1.

Waterway	Site Names	Report
Partner	Site Names	Reference
	Caen Hill Pumping Station	10031024-00516
Canal and River	(PS)	10031024-00536
Trust	Tinsley PS	10031024-00519
TTUSL	Seend PS	10031024-00517
	Calcutt PS	10031024-00518
	Leinster Aqueduct PS	10031024-00524
	Locks 16,17,18 on Grand	10031024-00525
	Canal	10051024-00525
Waterways	Shannon Harbour Locks 35	10031024-00526
Ireland	and 36	10031024-00320
	Richmond Harbour PS	10031024-00527
	Drumleague PS	10031024-00528
	Drumshanbo PS	10031024-00529
Voies	Crissey PS	10031024-00522
Navigables de	Briare PS	10031024-00521
France	Stock PS	10031024-00523

Table no. 1: Site Specific Audit Assessment Reports

2 Canal and River Trust Audit Findings

2.1 Caen Hill Pumping Station

2.1.1 Description

Caen Hill PS is located near Devizes, Wiltshire, UK. Its purpose is to supply water up from Lock 22 to Lock 50 on the Kennet and Avon Canal.

Figure no. 1: Caen Hill PS Photos

Constructed in 1996, Caen Hill PS is of a dry well construction, housing two dry well submersible pumps that normally run in duty only mode but can run in duty/assist operation. The pumps are automatically controlled based on canal level.

2.1.2 Phase 1 Identified Possible Improvements

A 15 % reduction in energy requirement was considered achievable pending further investigations. A summary of potential solutions/considerations for improvement is provided in Table no. 2.

ltem or lssue	Potential Improvement Action	Potential Impact on Energy/CO ₂
Rising Main Head Loss	Inspect intermediate check valves for condition and if in bypass. Remove or replace if defective.	-7 %
Pump Selection	Review Flygt selection, drives, and impeller diameter based on minimum peak flow rate needed.	-5 % to -10 %
Pump Motor	Consider premium efficiency motor.	-2.3 %
Pump Control	Implement a 2-level pump control system which allows pump flow rate to vary with Lock 50 flight levels. For example, reducing flow rate when levels are approaching the existing "Stop pump" level.	-5 %
Pipework Failures	Replace the existing ball check valves with a resilient hinge disc check valve and redesign pipework branches to achieve a better separation of pump and non-return valve (NRV) if possible.	Reduced call outs
VibrationUrgently review pump plinth construction, a structural assessment. Depending on the structural design, the new plinths need to integrated into the existing foundations.		Reduced failures and associated carbon footprint of transportation/and premature replacement parts.
Silt Build up & Blockages	Provide benching improvements to minimise dead spots. Review potential for reducing existing screen bar spacing.	Reduced call outs

Table no. 2: Caen Hill PS Potential Solutions

2.1.3 Phase 2 Investigations and Actions

The following actions were undertaken for Caen Hill PS.

- 1. An investigation at the intermediate check valve locations.
- 2. Removal of intermediate check valves.
- 3. Service of Pump #1 undertaken by the pump manufacturer.
- 4. Specialist vibration survey.
- 5. Rebuild of PS pipework and plinths (in progress June 2023).

A follow up audit test was undertaken in November 2021 see find the outcome of the actions undertaken on hydraulic and energy performance.

2.1.4 Phase 2 Energy Assessment

ltem	Estimated Phase 1 Specific Energy (kWh/m ³ x 1000)	Estimated Phase 2 Specific Energy (kWh/m ³ x 1000)	Comment	Estimated Impact on Energy/CO ₂
Pump 1	310	294.2	At 48 Hz	-5.1 %
Pump 2	296	301.3	At 48 Hz	+1.8 %
Pump 1 and 2	347.6	336.6	At 48 Hz	-3.2 %
Duty/Standby Operation	347.6	297.8		-14.3 %

The Phase 2 energy assessment is based upon the Phase 2 site audit findings.

Table no. 3: Caen Hill PS Phase 2 Specific Energy Assessment

The removal of intermediate NRVs resulted in an improvement by lowering head losses resulting in an improvement in Specific energy as well as increasing flow rate. The refurbishment/servicing of Pump 1 also gave an efficiency improvement. Pump 2 did not undergo a service and appears to have slightly degraded in performance.

In addition to the works at Caen Hill undertaken by the Trust, the construction of a new pumping station at Crofton, on the other (east) side of the summit of the Kennett and Avon canal has taken place, commencing service in July 2023. Crofton PS will assist in the supply of water to the summit of the canal.

Because of Crofton PS, Caen Hill PS will revert to a duty/standby operation rather than duty/assist as was the case during the Phase 1 investigations. Operating under a duty/standby mode (i.e., 1-pump operation) produces a lower specific energy as it will operate closer to its best efficiency point.

The total volume pumped from Caen Hill should also reduce. However, as it is not measurable at this stage, the annual pumped volume has been kept the same for the energy calculations.

The overhaul of Pump 2 is also planned for 2024 which should result in a further reduction to specific energy as found with the overhaul undertaken for Pump 1.

2.2 Seend Pumping Station

2.2.1 Description

Seend PS is situated near Devizes, Wiltshire, UK. Its purpose is to supply water up from Lock 17 to Lock 21 on the Kennet and Avon Canal.

Figure no. 2: Seend PS Photos

Constructed in 1986, it consists of a wet well housing two Xylem submersible pumps that normally operate in duty/assist mode.

2.2.2 Phase 1 Identified Possible Improvements

A 10 % reduction in energy requirement is considered achievable pending further investigations. A summary of potential solutions/considerations for improvement is provided in Table no. 4.

Item or Issue	Potential Improvement Action	Potential Impact on Energy/CO ₂
Pump Selection	Review pump selection (including cooling jacket, duty/standby vs duty-assist configuration), drives, and impeller diameter based on minimum peak flow rate needed. Assess the cost-benefit opportunities for these options.	-5 % to -10 %
Pump Motor	Consider premium efficiency motor.	-2.3 %
Pump Control	Confirm the levels and flowrates needed to maintain the system in operation before finalising the pump selection and duty configuration. Implement a pump control system which allows pump flow rate to vary with Lock 21 flight	-5 %

Item or Issue	Potential Improvement Action	Potential Impact on Energy/CO ₂
	levels. For example, reducing flow rate when levels are approaching the existing "Stop pump" level.	
Rising Main	The rising main diameter should also be further investigated to confirm the assumptions within this report.	
Vibration	Investigate the vibration issues on Pump 2 and assess the pump stool fixing.	Reduced failures and associated carbon footprint of transportation/and premature replacement parts.
Instrumentation	Inspect and potentially recalibrate the existing	
Monitoring	flowmeter and SCADA values.	

Table no. 4: Seend PS Potential Solutions

2.2.3 Phase 2 Investigations and Actions

No further actions have been undertaken at Seend PS due to the relatively low potential for energy savings in contrast to capital expenditure. Therefore, further actions for energy saving will be considered at the time of end-of-life pump replacement.

2.3 Tinsley Pumping Station

2.3.1 Description

Tinsley Pumping Station PS is situated in the Northeast of Sheffield, UK and is located downstream of Tinsley No 9 Lock on the Sheffield & Tinsley Canal, which is part of the Sheffield and South Yorkshire Navigation.

Figure no. 3: Tinsley PS Photos

Tinsley PS comprises two fixed-speed, submersible pumps that are provided with softstart drives and are automatically controlled on upstream level on a duty/standby basis.

Water is abstracted from the River Don via an intake with a bar screen and a 70 m long culvert that connects to the wet well. The level in the Tinsley Top Lock (Upper Flight) No.1 is monitored with a signal transmitted back to Tinsley PS. A PLC controller runs the duty pump when the upper flight level signal falls to a pre-set low level. The controller stops the duty pump upon a pre-set high level being reached.

2.3.2 Phase 1 Identified Possible Improvements

A 23.2 % reduction in energy requirement is considered achievable pending further investigations. A summary of potential solutions/considerations for improvement is provided in Table no. 5.

Item or Issue	Potential Improvement Action	Potential Impact on Energy/CO ₂
Pump Selection	Purchase Hidrostal F06G- EMU1+FEVV4-GSEK1AA pumps and retrofit into the well, modifying the existing pipework to accommodate as required.	-21.6 %

Item or Issue	Potential Improvement Action	Potential Impact on Energy/CO ₂
Pump Drives	Install VSDs for optimum control.	-1.6 %
Pump Control	Develop control algorithms/function blocks to monitor performance and automatically run at maximum efficiency / lowest specific energy or during off-peak tariff periods.	ТВС
Rising main	Consider feasibility of options to replace rising main.	-16,000 kWh per annum <i>(Estimated based on 1.3 km long, 600 mm internal diameter HDPE/PE100 pipe)</i>
Silt/Debris Build up & Blockages	Provide wet well benching to minimise dead spots. Review intake bar screen maintenance procedures.	Reduced call outs
Wet well hydraulics	Monitor pump performance and efficiency of new installation – review the wet well/intake hydraulics and pump orientation to find if potential improvements to the arrangement can be made should issues arise/persist.	ТВС

Table no. 5: Tinsley PS Potential Solutions

2.3.1 Phase 2 Investigations and Actions

The following actions were undertaken for Tinsley WPS.

1. Installation of Hidrostal F06G-EMU1+FEVV4-GSEK1AA pumps into the well, modifying the existing pipework to accommodate.

The estimated savings have been derived on the system with the original pumping main and Hidrostal pumps. Due to subsequent rising main failures from land slippage. changes to the rising main have been made since and new pumping arrangements are under review. Therefore, further assessments will be undertaken following completion.

2.3.2 Phase 2 Energy Assessment

The Ph2 energy assessment is based upon the derived system curve (original main) and from the SCADA site data.

ltem	Estimated Phase 1 Specific Energy (kWh/m ³ x 1000)	Estimated Phase 2 Specific Energy (kWh/m ³ x 1000)	Comment	Estimated Impact on Energy/CO ₂
Pump 1	134.4	110 7	Power estimated from	-22 %
Pump 2	150.4	110.7	desktop assessment.	-22 70

Table no. 6: Tinsley PS Phase 2 Specific Energy Assessment

2.4 Calcutt Pumping Station

2.4.1 Description

Calcutt PS is situated near Southam, Warwickshire, UK and is the last in the chain of a series of eleven pumping stations along the Grand Union Canal.

Figure no. 4: Calcutt PS Photo

Calcutt PS comprises a single, fixed-speed submersible pump within a wet well with a valve chamber and a flow meter. The pump is automatically controlled on level. Level probes are located within the in wet well and pressure transducers are provided for measurement of downstream and upstream canal water levels in the lower and upper pound.

A PLC controller runs the duty pump when the upper pound level signal falls to a preset low level. The controller stops the duty pump upon a pre-set high level being reached in the upper pound. The pump is also inhibited upon a pre-set low level being reached in the lower pound.

2.4.2 Phase 1 Identified Possible Improvements

In Phase 1, up to a 41 % reduction in energy requirement was considered achievable pending further investigations.

A summary of potential solutions/considerations for improvement is provided in Table no. 7.

Item or Issue	Potential Improvement Action	Potential Impact on Energy/CO ₂
Rising Main Head Loss	Confirm specification details/diameter of existing plastic pipework and consider upsizing existing pipework upstream of flowmeter to lower head losses.	ТВС
Pump Selection	Provide fixed speed duty only (single) pump or duty/standby pump installation.	-39 % to -41 %
Pump Drives	Provide premium efficiency motor (IE3).	ТВС
Pump Control	Consult with University of Liege and finalise the levels and flowrates needed to maintain the system in operation before finalising the pump selection and duty configuration.	ТВС

Table no. 7: Calcutt PS Potential Solutions

2.4.3 Phase 2 Investigations and Actions

The following actions have been undertaken for Calcutt PS.

- 1. Pump review study and redesign of pumping station arrangement.
- 2. Purchase of Hidrostal F10K pump.
- 3. Purchase of Control Panel c/w variable speed drive.
- 4. Testing of above pump and panel on the Green WIN Test Bench at University of Liege.
- 5. Replacement and upsizing of the existing pipework.

From the Laboratory testing and review of site needs the pump will be aet up to run at 180l/s @ 9.5m at a VSD frequency of approx. 47.5Hz. At this duty condition, the pump operates within 5% of its best efficiency point. The overall efficiency is anticipated to be 67.8% with a specific energy of 38.2kWh/Ml.

The Phase 1 original estimate of 41% saving was based on an initial pump selection at a flow rate of 120l/s. Following a pump design study, this option was not selected as it did not meet the minimum required flow rate.

2.4.4 Phase 2 Energy Assessment

The Phase 2 energy assessment is based upon the derived system curve, from the Phase 2 site audit.

ltem	Estimated Phase 1 Specific Energy (kWh/m ³ x 1000)	Estimated Phase 2 Specific Energy (kWh/m ³ x 1000)	Comment	Estimated Impact on Energy/CO ₂
Pump 1	52.3	38.2	Based on UoL Laboratory Pump Test; 180l/s flow rate and 47.5Hz	- 27 %

Table no. 8: Calcutt PS Phase 2 Specific Energy Assessment

3 Waterways Ireland Audit Findings

3.1 Leinster Aqueduct Pumping Station

3.1.1 Description

Leinster Aqueduct PS is situated on the River Liffey, approximately 2 km northeast of Donore, Co. Kildare. The pumping station lifts water from the River Liffey into the Grand Canal Lock system to replenish the system during the summer months.

Figure no. 5: Leinster Aqueduct PS (viewed from Grand Canal)

Leinster Aqueduct PS comprises three KSB Amarex fixed speed, 18.5kW rated submersible pumps, each located within dedicated pump bays. The pumps are protected by a 50 mm spaced bar screen and low-level suction protection probes.

The pumps are controlled in 'hand', with no other instrumentation present (flow meter, pressure transducer, etc.).

The pump station typically operates between approximately March and September with the sluice gate drain in operation for the remainder, draining excess water from the canal network. The sluice is manually operated.

3.1.2 Phase 1 Identified Possible Solutions

A summary of potential solutions/considerations for improvement is provided in Table no. 9.

gn & Consultan	CV
atural and	-
assets	

ltem or lssue	Potential Improvement Action	Potential Impact on Energy/CO ₂
Pump Performance	Lift and investigate Pump 2 and Pump 3 impellers. Remove any soft blockages.	
Instrumentation and Controls	Install level sensors on discharge canal flight. Install magnetic flowmeters on all three-pump delivery lines c/w check valves. Install threaded process connection on all three-pump delivery lines to allow pressure readings on future tests. Install a 'smart' pump controller including power metering that can automatically control the pumps using inputs from the above instrumentation measurements together with optimised efficient running and callouts.	TBC
SCADA / Telemetry	Install 'smart' controller (as above) with communication capability and remote data access via GPRS/GSM signal in lieu of more expensive SCADA and telemetry at PS.	
Return Sluice Gate	Repair leakage from sluice gate.	-2.5 %

Table no. 9: Leinster Aqueduct Potential Solutions

3.1.3 Phase 2 Investigations and Actions

The following actions have been undertaken for the Liffey Aqueduct pumping station.

- 1. Lift and removal of debris from pump impellers.
- 2. Automation of PS based upon upstream pound level.
- 3. Replacement of existing KSB pump with Xylem NX3202 submersible pump for P1 only.
- 4. Procurement and installation of variable speed drive for P1.
- 5. Adaption of 3no. rising mains to include flowmeters and check valves.
- 6. Introduction of smart controller for all three pumps and remote accessibility of PS data via GSM link and 3rd party hosted website.

This PS was chosen for a new variable speed pump installation by WI to allow a direct comparison with the existing fixed speed pumps.

3.1.4 Phase 2 Energy Assessment

The Phase 2 installation is yet to be completed at the time of writing. The Ph2 energy assessment is based upon the derived system curve, from the Phase 1 site audit, and

manufacturers performance data from the procured Xylem NX3202 pump data and Danfoss Variable Speed Drive.

ltem	Estimated Phase 1 Specific Energy (kWh/m ³ x 1000)	Estimated Phase 2 Specific Energy (kWh/m ³ x 1000)	Comment	*Estimated Impact on Energy/CO2
Pump 1	49.8	49.8	Replaces KSB Amarex for Pump 1 (Assumed 50% of flow as 1 st duty)	-
Pump 2	53.7	49.8	Replace former Pump 1 in Pump 2 location (Assumed 25% of flow as 1 st Assist)	-2 %
Pump 3	52	52	Assumed 25% of flow as 2 nd Assist)	
Sluice Gate repair			Avoids recirculation of flow	-10 %
Automatic Controls			Optimizes Pump Usage based on Canal Level. TBC	-10 %
			Combined	-11.8%

The return sluice gate is also understood to be repaired.

Table no. 10: Leinster Aqueduct PS Phase 2 Specific Energy Assessment

* To be confirmed following installation of solution and monitoring

3.2 Grand Canal Locks 16. 17, 18 Pumping Stations

3.2.1 Description

For Locks 16, 17 & 18 on the Grand Canal, three pump houses operate in a chain to supply water to the summit pound of the Grand Canal during dry periods to maintain navigable water levels.

The Phase 1 assessment is based upon the data provided by WI and a site audit visit undertaken in September 2019.

Lock 16 is located near Digby Bridge, Sallins, Co. Kildare and discharges across the Lock gate towards Lock 17.

Lock 17 is located near Landenstown Bridge, near Donore, Co. Kildare.

Lock 18 is located near Goatstown, Denore, Co. Kildare. The pump house is the last of a chain of pumping stations along the Grand Canal designed to maintain an upstream level within the canal.

Figure no. 6: Lock 16 on the Grand Canal PS (viewed from Digby Bridge)

All three pumping stations comprise a wet well with fixed intake bar screen housed within the confines of a superstructure building. All three sites each comprise a single KSB submersible pump, of the same model and size, which date back to around 2010. The delivery pipework is comprised of 250 mm diameter ductile iron flanged pipework. There are no isolation or check valves contained within the pump stations.

The rising main arrangements differ between the three sites.

At Lock 16, the 300 mm diameter rising main free discharges to an outfall chamber approximately 10 m away from the pump house. The flow then gravitates approximately 20 m to the outfall into the canal via a 600 mm diameter cast iron pipe.

Unlike Lock 16, the rising main for Lock 17 discharges into the canal over a weir board approximately 30 m away from the pump house.

Lock 18 rising main is similar in nature to that of Lock 16 with the rising main free discharging to an outfall chamber approximately 10 m away from the pump house. The flow then gravitates approximately 20 m to the outfall into the canal via a 600 mm diameter cast iron pipe.

3.2.2 Possible Improvements

A summary of potential solutions/considerations for energy improvement provided in Table no. 11.

ltem or lssue	Item or Issue Potential Improvement Action	
Pump Performance Uncertainty	Investigate the pumps at Lock 16 and 18 for loss of efficiency, potential debris in pump/ motor deficiencies/ etc. A more efficient pumping option is available by examining the market for alternative pumps. For example, utilising a Xylem NP3171 LT612 may save 3.7 kWh/Ml on paper. <i>At this stage it is suggested that</i> <i>pump replacement is not an immediate priority.</i>	-8 %
Instrumentation and Controls	Install level sensors on discharge canal flight. Install magnetic flowmeters on all three-pump delivery lines. Install a 'smart' pump controller including power metering that can automatically control the pumps using inputs from the above instrumentation measurements together with optimised efficient running and callouts.	-5 % to -10 %
SCADA / Telemetry	Install 'smart' controller (as above) with communication capability and remote data access via GPRS/GSM signal in lieu of more expensive SCADA and telemetry at PS.	
Lock Gates	Investigate the lock gates at Lock 17 for leakage and possible refurbishment.	-2.5 %

Table no. 11: Lock 16,17 & 18 Grand Canal Potential Solutions

3.2.3 Phase 2 Investigations and Actions

The following actions have been undertaken for the pumping stations at Lock 16, 17, and 18.

- 1. Laboratory Performance Testing of KSB Amarex Pump (as installed at all three PSs) at the University of Liège Test Bench.
- 2. Lift and removal of debris from pump impellers.
- 3. Automation of all three PSs based upon upstream pound level.
- 4. Addition of variable speed drives at L16 and L18 (sites chosen to investigate impact of VSDs).
- 5. Adaption of rising mains to include flowmeters.
- 6. Introduction of smart controllers and remote accessibility of PS data via GSM link and 3rd party hosted website.

3.2.4 Phase 2 Energy Assessment

The Phase 2 installation is yet to be completed at the time of writing. The Phase 2 energy assessment is based upon the derived system curves, from the Phase 1 site audit, the laboratory performance results of the KSB Amarex Pump, and the Danfoss Variable Speed Drive published efficiency data.

ltem	Estimated Phase 1 Specific Energy (kWh/m ³ x 1000)	Estimated Phase 2 Specific Energy (kWh/m ³ x 1000)	Comment	* Estimated Impact on Energy/CO2
Lock 16	25.3	24.3	VSD datasheet states 98% efficiency	-4%
Lock 17	23.6	22.7	No VSD	-4%
Lock 18	31	23.4	VSD datasheet states 98% efficiency	-24%
Automatic Controls			Optimizes Pump Usage based on Canal Level. TBC	-10%
			Combined	-14.8%

Table no. 12: Grand Canal Locks 16 to 18 PSs Phase 2 Specific Energy Assessment

* To be confirmed following installation of solution and monitoring

3.3 Shannon Harbour Locks 35 and 36

3.3.1 Description

Two pumping stations are used in a chain to supply water to the Grand Canal from the River Shannon/River Bresna confluence during dry periods to maintain navigable levels.

Figure no. 7: Lock 36 PS on the Grand Canal

The audit assessment was based upon the following inputs:

- Initial Technical Assessment paper by WI.
- Existing pump datasheet.
- A site audit investigation and pump performance testing by Arcadis and Samatrix in September 2019.

Both pumping stations are very similar in layout and construction, and are essentially identical, from a pump hydraulic perspective. Each pumping station comprises one ABS fixed-speed submersible pump.

The pump discharge pipework is 150 mm nominal diameter (DN150) flanged DI pipe. The DI pipework connects to a 250 mm diameter rising main of unknown material, suspected to be asbestos cement. The discharge points are concealed and not accessible from the surface.

There are no isolation or check valve contained within the pump station. An ultrasonic level probe is located within the wet well and for purposes of pump suction protection. No sustained reverse flow was observed following cessation of pumping.

Figure no. 8: Lock 35 PS on the Grand Canal

Both pumping stations operate under manual control and run continuously where possible. This is reportedly because of the pumping system being unable to quickly recover levels should the upstream level drop significantly, especially if the boat repair dry dock is in operation.

There are no operational telemetry or SCADA facilities associated with the two pumping stations.

Waterways Ireland are considering a new additional pump station at Lock 34. There are reports of substantial leaks in the system between Lock 31 and Lock 34, therefore increasing pump capacity to 150 l/s is preferred from Lock 36.

3.3.2 Phase 1 Identified Possible Improvements

A summary of potential solutions/considerations for improvement provided in Table no. 13.

ltem or lssue	Potential Improvement Action	Potential Impact on Energy/CO ₂
Pump Performance	 SHORT TERM - Check the existing pumps, notably Lock 35, for signs of blockage, impeller damage, and impeller to bottom plate gap, adjusting as necessary. Temporary testing of an alternative pump with a known performance curve would help find the system requirements so that a permanent pump selection can be made with further confidence. Replace pumps with DN250 outlet alternative as per highlighted Xylem / Sulzer performance and non-clog impellers and sized for 150 l/s duty flow rate. 	-40 % across both PSs

gn & Co	nsul	tan	CV
atural a			
assets			

ltem or lssue	Potential Improvement Action	Potential Impact on Energy/CO ₂
	Replace existing DN150 pipework with DN250 pipework to reduce piping pressure losses.	
Instrumentation and Controls	Install level sensors on discharge canal flight. Install magnetic flowmeter on pump delivery lines. Install a 'smart' pump controller including power metering that can automatically control the pumps using inputs from the above instrumentation measurements together with optimised efficient running and callouts. Install 'smart' controller (as above) with	-10% to 30 %
SCADA / Telemetry	GPRS/GSM signal in lieu of more expensive SCADA and telemetry at PS.	
Lock Gates	Lock Gates Investigate the lock gates for leakage and possible refurbishment.	
Asset Data Information	Conduct a design survey, possibly point cloud survey, and outline design of the existing wet well to confirm the feasibility of accommodating larger DN250 pipework and pumps.	

Table no. 13: Shannon Harbour Potential Solutions

3.3.3 Phase 2 Investigations and Actions

The following actions have been undertaken for the pumping stations at Lock 35 and Lock 36.

- 1. New control panels at both PSs.
- 2. Automation of both PSs based upon upstream pound level.
- 3. Design and proposed construction of new wet well, pipework and 2 no. Xylem NP3153 LT pumps at L36.
- 4. Adaption of rising mains to include flowmeters.
- 5. Introduction of smart controllers and remote accessibility of PS data via GSM link and 3rd party hosted website.

3.3.4 Phase 2 Energy Assessment

The Phase 2 installation is yet to be completed at the time of writing. The Ph2 energy assessment is based upon the derived system curves, from the Phase 1 site audit, and published data from the manufacturer of the procured pumps at Lock 36.

ign & Consultancy	1
natural and	
t assets	

ltem	Estimated Phase 1 Specific Energy (kWh/m ³ x 1000)	Estimated Phase 2 Specific Energy (kWh/m ³ x 1000)	Comment	* Estimated Impact on Energy/CO ₂
Lock 35	50.6	50.6	Automatic controls only	-
Lock 36	45	18.2	New 2-pump PS	-59.5%
Automatic Controls			Optimizes Pump Usage based on Canal Level. TBC	-10%
			Combined	-40.6%

Table no. 14: Grand Canal Locks 35 and 36 PS Phase 2 Specific Energy Assessment

* To be confirmed following installation of solution and monitoring

3.4 Richmond Harbour Pumping Station

3.4.1 Description

Richmond Harbour is located near Cloondara, County Clondra. The pump house is the first in a chain of pumping stations along the Royal Canal designed to maintain an upstream level within the canal from the River Camlin.

The energy consumed in 2016 was 78,554 kWh.

Figure no. 9: Richmond Harbour PS (Left); Richmond Harbour PS Outfall (Right)

There is no historic performance data or drawings available for Richmond Harbour. A site visit and was undertaken in September 2019.

Richmond Harbour comprises of one KSB fixed-speed axial flow pump. The pump station intake is direct from the River Camlin via a concrete intake culvert. The intake is fully submerged and is protected with a 100 mm spaced bar screen. Electrode level probes are located within the wet well and operate for low level protection.

The pump discharge pipework is PN16 DN300 cast iron and includes a gate isolation valve complete with pedestal. The pipework is located below ground level and can be accessed by an inspection hatch located on the pump house floor.

The rising main discharges directly into Richmond Harbour; the exact nature of the discharge could not be ascertained as it was submerged, but it is reported to have a flap valve on the exit.

The rising main runs from the pump house to Richmond Harbour and discharges fully submersed via a flap valve. It is reported that there are no other isolation or check valves present on the rising main. The pipeline condition is unknown but there are no reports of bursts arising since construction.

ARCADIS Design & Consultancy for natural and built assets

3.4.2 Phase 1 Identified Possible Improvements

A summary of potential solutions/considerations for improvement provided in Table no. 15.

ltem or lssue	Potential Improvement Action	Potential Impact on Energy/CO ₂
Pump Performance	Consider like for like replacement with new vertical pump and premium efficiency motor.	-11 %
Pumping Station Resilience	Consider design and construction of new wet well pumping station off-line c/w 2no. submersible pumps.	-
Instrumentation and Controls	Install level sensor on discharge canal flight. Install magnetic flowmeter on pump delivery line. Install threaded process connection on pump delivery line to facilitate future pump audit testing. Install a 'smart' pump controller including power metering that can automatically control the pumps using inputs from above instrumentation measurements together with optimized efficient running and callouts.	TBC (-50 %)
SCADA / Telemetry	Install 'smart' controller (as above) with communication capability and remote data access via GPRS/GSM signal in lieu of more expensive SCADA and telemetry at PS.	
Asset Data Information	Conduct a design survey, possibly point cloud survey of the inlet culvert should be undertaken to determine dimensions and facilitate future works	

Table no. 15: Richmond Harbour Potential Solutions

3.4.3 Phase 2 Investigations and Actions

The following actions have been undertaken for the pumping station:

- 1. New replacement pump and motor (replaced 2022).
- 2. New control panel.
- 3. Automation based upon upstream pound level.
- 4. Adaption of rising main to include flowmeter.
- 5. Introduction of smart controller and remote accessibility of PS data via GSM link and 3rd party hosted website.

3.4.4 Phase 2 Energy Assessment

The Phase 2 electrical and controls installation is yet to be completed at the time of writing. However, a new pump and motor were installed in 2022. The Phase 2 energy assessment is based upon the derived system curves, from the Phase 1 site audit, and published data from the manufacturer of the newly installed pump.

ltem	Estimated Phase 1 Specific Energy (kWh/m ³ x 1000)	Estimated Phase 2 Specific Energy (kWh/m ³ x 1000)	Comment	* Estimated Impact on Energy/CO ₂
Pump & Motor	16.4	13.8	Estimated Motor efficiency of 92%	-15%
Automatic Controls			Optimizes Pump Usage based on Canal Level. TBC	-10%
			Combined	-24.4%

Table no. 16: Richmond Harbour PS Phase 2 Specific Energy Assessment

* To be confirmed following installation of solution and monitoring

3.5 Drumleague Pumping Station

3.5.1 Description

Drumleague PS is situated on the Lough Allen Canal, between Deffier and Lustia, Carrick-on-Shannon, County Leitrim. The pumping station is supplementary to Drumshanbo and was made operational as Drumshanbo PS is unable to maintain the level in the Lough Allen canal system. Drumleague PS has only been operating for approximately 12-months and had been out of commission for a period.

A site visit was undertaken in September 2019.

Figure no. 10: Drumleague PS

Drumleague PS comprises one Xylem 15 kW, fixed-speed, submersible pump (Model: NP3171.181). The pump is situated at the bottom of a circa 3.5 m deep wet well.

The pump is operated manually in 'hand', with no other instrumentation present (flow meter, pressure transducer, etc.) on the system. It was reported that the pump currently operating at Drumleague had been sat in dry dock for several years before and its condition was unknown.

3.5.2 Phase 1 Identified Possible Improvements

A summary of potential solutions/considerations for improvement provided in Table no. 17

Item or Issue	Potential Improvement Action	Potential Impact on Energy/CO ₂
	Inspect existing pump for any blockage or damage to the impeller. Photograph and record nameplate on pump and motor to confirm pump model.	
Pump Performance	Temporary testing of an alternative pump with a known performance curve would help find the system requirements so that a permanent pump selection can be made with further confidence.	TBC (-50%)
	Review required flow rate in conjunction with Drumshanbo PS and change pump to suit if needed.	
Rising Main	Inspect the rising main for any potential issues with a camera survey, such as blockage, collapse, or partially closed valves. It is also recommended that the Ferrer flap valve is inspected to ensure free movement over the full range of opening.	
Instrumentation and Controls	Install level sensor on discharge canal flight. Install magnetic flowmeter on pump delivery line. Install threaded process connection on pump delivery line.	
Install 'smart' controller (as above) with SCADA / Telemetry GPRS/GSM signal in lieu of more expensive SCADA telemetry at PS.		

Table no. 17: Drumleague PS Potential Solutions

3.5.3 Phase 2 Investigations and Actions

No changes have been made under Phase 2 with the focus on Drumshanbo on this section of the canal system.

3.6 Drumshanbo Pumping Station

3.6.1 Description

Drumshanbo PS is located just outside Drumshanbo, County Leitrim. The pumping station lifts water from Lough Allen into the Lough Allen canal system to replenish the system during the summer months. Drumshanbo PS is part of a dual lock system. A dual lock allows for the variations in upstream water levels in Lough Allen, as during the winter months the Lough level exceeds the canal level and the lock works in the other direction.

Figure no. 11: Drumshanbo Dual Lock Station

There are no known drawing records. A site audit visit undertaken in September 2019.

Drumshanbo pump station is comprised of one 15 kW, fixed-speed, submersible pump (Model: Xylem NP3171.181) located within a wet well.

The pump is operated manually in 'hand', with no other instrumentation present (flow meter, pressure transducer, etc.). Currently, Drumshanbo cannot maintain a sufficient level within the Lough Allen canal system and additional flow is topped up from Drumleague PS.

The pump discharge pipework is DN300 ductile iron up to the pump house and connects into a 315 mm OD PE rising mains encased in concrete. It should be noted that the PE rising main diameter has been estimated as the pipework could not be fully exposed for the pump audit.

3.6.2 Phase 1 Identified Potential Areas for Improvement

A summary of potential solutions/considerations for improvement provided in Table no. 18.

ltem or lssue	Potential Improvement Action	Potential Impact on Energy/CO ₂
	Inspect existing pump for any blockage or damage to the impeller. Photograph and record nameplate on pump and motor to confirm pump model. Replace if damaged.	
Pump Performance	Temporary testing of an alternative pump with a known performance curve would help find the system requirements so that a permanent pump selection can be made with further confidence.	-26 %
	Review required flow rate in conjunction with Drumleague PS and change pump to suit if needed.	
Pump Drives	Provide premium efficiency motor (IE3) if pump replaced	-2 %
Pumping Station Resilience	Survey wet well and consider modification with an additional pump, commencing with feasibility study. Consider box spare pump as lower cost (and less resilient) alternative choice.	N/A
Rising Main	Inspect the rising main for any potential issues with a camera survey, such as blockage, collapse, or partially closed valves. It is also recommended that the Ferrer flap valve is inspected to ensure free movement over the full range of opening.	ТВС
Instrumentation and Controls SCADA /	Install level sensor on discharge canal flight. Install magnetic flowmeter on pump delivery line. Install threaded process connection on pump delivery line. Install a 'smart' pump controller including power metering that can automatically control the pumps using inputs from the above instrumentation measurements together with optimised efficient running and callouts. Install 'smart' controller (as above) with communication canability and remote data access via GPRS/GSM signal	TBC (-50 %)
Telemetry	capability and remote data access via GPRS/GSM signal in lieu of more expensive SCADA and telemetry at PS.	

Table no. 18: Drumshanbo PS Potential Solutions

3.6.3 Phase 2 Investigations and Actions

The following actions have been undertaken for the pumping station:

- 1. New (additional) submersible pump.
- 2. Adaption of wet well and pipework to accommodate 2 pumps instead of one pump.
- 3. New control panel.
- 4. Automation based upon upstream pound level.
- 5. Adaption of rising main to include flowmeter.
- 6. Introduction of smart controller and remote accessibility of PS data via GSM link and 3rd party hosted website.

3.6.4 Phase 2 Energy Assessment

The Phase 2 electrical and controls installation is yet to be completed at the time of writing. However, a new pump and motor were installed in 2022. The Phase 2 energy assessment is based upon the derived system curves, from the Phase 1 site audit, and published data from the manufacturer of the newly installed pump.

ltem	Estimated Phase 1 Specific Energy (kWh/m ³ x 1000)	Estimated Phase 2 Specific Energy (kWh/m ³ x 1000)	Comment	* Estimated Impact on Energy/CO ₂
Pump & Motor	26.3	22.8		-13.3%
Automatic Controls			Optimizes Pump Usage based on Canal Level. TBC	-10%
			Combined	22%

Table no. 19: Drumshanbo PS Phase 2 Specific Energy Assessment

* To be confirmed following installation of solution and monitoring

4 Voies Navigables de France Audit Findings

4.1 Crissey Pumping Station

4.1.1 Description

The audit assessment was based upon the following inputs:

- Desktop study review.
- Data provided by Voies Navigables de France (VNF) via the Green WIN intranet site.

Figure no. 12: Crissey Lock Pumping Station

Crissey PS was built in 1960s and is located at the eastern end of the Canal du Center, at the junction with the Saône. The canal is supplied with water by the reserve ponds located around Le Creusot (between Montchanin and Montceau-les-Mines), and by the Dheune (which runs along the Mediterranean side between Chagny and Montchanin).

The pumping station is designed to allow water to be raised from the Saône to the forebay (towards Reach 34-34 bis) in order to make river navigation possible.

Prior to Green WIN, Crissey PS comprised two Rateau type ID BV 57 pumps each located on either side of the lock. The automation of the pumping system is carried out via the Automate Programmable Industriel (API), i.e. the industrial programmable controller, and the operating range can be adjusted from the HMI.

4.1.2 Phase 1 Identified Possible Improvements

- Install the current VNF proposed pump selection, a Xylem CT3400.
- Continue with fixed speed drives.
- Introduce an improved automated control system utilising latest technology based on downstream (and upstream) level monitoring, including consideration of 'smart' controllers.
- Introduce performance metric reporting and possible smart control adjustment.

4.1.3 Phase 2 Investigations and Actions

The following actions have been undertaken for the pumping station:

- 1. New replacement Xylem pumps and motor (replaced 2021).
- 2. Electrical modernisation.
- 3. Automation improvements to both pumps based upon upstream pound level.
- 4. Flood resilience improvements.

4.1.4 Phase 2 Energy Assessment

ltem	Estimated Phase 1	Estimated Phase	* Estimated		
	Specific Energy	2 Specific Energy	Impact on		
	(kWh/m ³ x 1000)	(kWh/m ³ x 1000)	Energy/CO ₂		
Pump & Motor	52 and 81	42	-36.8%		

Table no. 20: Crissey PS Phase 2 Specific Energy Assessment

4.2 Briare Pumping Station

4.2.1 Description

Briare PS is equipped with six pumps although it operates with only two pumps for most of the time and up to three if necessary.

The project considerations for this pumping station for implementation 2020 are as follows:

- Automation, supervision and telecontrol of pumping operations.
- Optimising of operations time periods.
- Implementing at least one new pump.
- Motor IE3 or IE4 energy performance, VSD.
- Smart water and energy monitoring.

Arcadis' Phase 1 assessment was a desktop study review based upon the data provided by VNF via the Green WIN intranet site.

4.2.2 Phase 1 Identified Possible Improvements

- Undertake on site flow and pressure monitoring assessment to determine actual system characteristics.
- Assuming curves are as expected, select Xylem CP3231 pump model as proposed and consider use of an IE3 motor for new pumps.
- Continue with fixed speed drives.
- Introduce an automated control system based on downstream (and upstream) level monitoring, including consideration of 'smart' controllers.
- Introduce performance metric reporting and possible smart control adjustment.

4.2.3 Phase 2 Investigations and Actions

No further actions have been undertaken at this time. Further actions for energy saving will be considered at the time if end-of-life pump replacement.

4.3 Stock Pumping Station

4.3.1 Description

Stock PS is located on the east bank of the Stock Pond and is vital for the water supply of the Marne to the Rhine Canal and the Saar Canal. It is equipped with four pumps and allows the transfer of water to raise the level of the pond towards the canal in order to feed the Vosges sharing bay, and thus the Marne to the Rhine Canal, as well to Strasbourg as to Nancy, and the Saar Canal.

Arcadis undertook a desktop study review in Phase 1 based upon the data provided by VNF via the Green WIN intranet site.

The pumping station is reported to be able to deliver approximately 171,000 m³ over 24-hours with three pumps operating simultaneously and 230,000 m³ with four pumps, although only three can be operated at the same time due to electrical restrictions.

The existing pumps appear to be horizontal, axially split, double suction, centrifugal pumps that are long coupled to 110 kW slip ring motors. It is understood that the motors were refurbished in 2003.

4.3.2 Phase 1 Identified Possible Improvements

Consideration of new pumps, similar to the units identified below:

- Bedford SB45.12.06 390 mm impeller suspended submersible pump.
- Xylem 20 x 18 WLS 518 mm impeller **horizontal split case pump**.

Pump	Duty Point	Motor Rating (kW)	Pump Efficiency at duty point (%)	Motor Efficiency* (%)				
Bedford	600 l/s at 11.4 m	90	87.5	95.2				
Xylem	600 l/s at 11.0 m	90	88.9	95.2				
*IE3 motor minimum efficiency								

Table no. 21: Comparison of potential alternative pump selections

Other potential improvements include:

- Automation of pumping e.g. use of 'smart' pump controller.
- Installation of premium efficiency motors to new and/or existing pumps.
- Consideration of variable speed drives.
- Installation of flow meter on common main to provide automation of pump flow control as well as the facility for remote monitoring.
- Investigate energy recovery feasibility for return flows.

4.3.3 Phase 2 Investigations and Actions

No further actions were undertaken at this time. Further actions for energy saving will are being considered based on the Phase 1 investigations. Considering the final configuration that is finally chosen, an estimated energy efficiency savings ratio of 30 % between the previous and new pumping equipment from Stock pumping station modernisation should allow annual savings of around 2300 kgCO₂e emissions.

5 VLM Audit Findings

Further to the Phase 1 established trial sites, several existing Land Remediation Management (LRM) pumping stations in the VLM region were assessed by Arcadis during Phase 2 for possible energy improvements through a change of pump.

Table 24 in Appendix A describes the breakdown of the assessment calculations. The outcome of the assessment was that an estimated energy and carbon saving of 6.7 % may be realised by reselection of the pump matched to the particular system characteristics.

6 Pump Summary

6.1 Phase 1 Trial Sites

From the audit assessments of the trial sites, a summary of the installed pump model and its performance is provided, together with the required post-improvement flow rate and head.

Trial Site	Partner	Original Pump Model	Estimated Phase 1 Flow Rate (l/s)	Estimated Phase 1 Head (m)	Improvements In progress / Completed	Phase 2 Pump Model (Blank if no change)	Estimated Phase 2 Flow Rate (l/s)	Estimated Phase 2 Head (m)	University of Liege Laboratory Testing
Caen Hill PS		Xylem CT3240	133	84	Reduce Main Losses		138.2	83	No
Tinsley PS	Canal & River Trust	Xylem NP3301 HT	109	26	New Hidrostal Pumps and VSD	Hidrostal F06G- EMU1+FEVV4- GSEK1AA	155	28.2	No
Seend PS		Xylem NP3301	165	19	-				No
Calcutt PS		KSB KRT200-330 modified	245	14.5	New Pumps New Pipework VSDs	Hidrostal	195	10.5	Yes
Leinster Aqueduct		KSB KRT200-401	119	12	P1 Pump & VSD Control Regime	Xylem NX3202 (1 pump of 3)	130	13.7	No
Locks 16,17,18 Grand Canal		KSB KRT250-400	160	5.3	VSD (L16, L18) Control Regime		161,169,166	5.8, 5.3, 5.5	Yes
Shannon Harbour	Waterways	ABS AFP1521 M150 4-32	83 & 98	5 & 6.1	New Pumps Enlarge Pipework Control Regime	Xylem NP3153	147	4.5	No
Richmond Harbour	Ireland	KSB PLZ300	226	3.8	New Pumps New Well (TBC) Control Regime	KSB	225	3.7	No
Drumleague PS		Xylem NP3171	50	9.5	-				No
Drumshanbo PS		Xylem NP3171	180	2.7	New Pumps Control Regime	Additional Xylem NP3171	212	5.95	Yes
Crissey PS	Voies	-	-	-	New Pumps Flowmeter	Xylem	600	12.5	No
Briâre PS	Navigables de France	Xylem NP3231	210	48	-				No
Stock PS		Rateau EPB41	410	8.2	-				No

Table no. 22: Trial Site Pump Summary Table

7 Energy Assessment

7.1 Energy and Carbon Saving Assessment

Table no. 23 summarises Arcadis' Phase 2 assessment of the energy improvement as a result of implementing the proposed improvements. It is recognised that Phase 2 site audits are still to be completed at various sites, so a range has been estimated based on University of Liege laboratory testing.

Trial Site	Partner	Estimated Annual Energy Usage (Phase 1)	Improvement Undertaken/In Progress	Potentia	Estimated Il Change in gy Usage	Phase 1 Potential Carbon Emission Change	Phase 2 Estimated Potential Change in Energy Usage		Phase 2 Potential Carbon Emission Reduction	Emission Factor 2021*
		(kWh)		(%)	(kWh)	(kgCO ₂ e/year)	(%)	(kWh)	(kgCO ₂ e/year)	(kgCO2e/kWh)
Caen Hill PS		1,488,100	NRV removal to lower rising main head loss / pump service Conversion to duty/standby operation	-15.2	-226,700	-66,038	-14.3	-213,400	-62,163	0.29130
Tinsley PS	Canal &	541,120	Install Hidrostal F06G-EMU1+FEVV4-GSEK1AA Pumps	-23.2	-125,780	-36,640	-22.0	-119,046	-34,678	0.29130
Seend PS	River Trust	223,593	No Action	-22.4	-50,082	-14,589	-	-	-	0.29130
Calcutt PS		203,693	Install Hidrostal Pumps, pipework upgrade and variable speed drives	-40.6	-82,608	-24,121	-27.0	-54,915	-15,997	0.29130
Leinster Aqueduct		133,182	Repair Sluice Gate / implement automatic level control and flow measurement with smart controllers / Replace Pump 1 with new Xylem Pump and VSD / Investigate and solve pump 2 reduced efficiency (suggest swap with Pump 1 when replaced)	-10	-13,318	-4,834	-11.8	-15,715	-5,705	0.363
Locks 16,17,18 Grand Canal		201,348	Recondition Lock 16 and 18 pumps / implement automatic level control and flow measurement using smart controllers / Install VSDs at Lock 16 and 18	-14.25	-28,692	-10,415	-16.2	-32,625	-11,843	0.363
Shannon Harbour	Waterways Ireland	286,748	Install new wet well and pipework and Xylem NP3171 pumps at Lock 36 / Install new control panels, automatic level control and flow measurement using smart controllers.	-70.3	-201,563	-73,167	-40.6	-116,350	-42,235	0.363
Richmond Harbour		78,554	Install KSB PNW A4 300 pump / Install new control panels, automatic level control and flow measurement using smart controllers.	-9.0	-8,045	-2,920	-23.5	-18,460	-6,701	0.363
Drumleague		49,016	No action	-73.0	-35,806		-	-	-	
Drumshanbo		49,891	Install new Xylem NP3171 MT181 pump and reconfigure pipework for 2 pumps (duty/standby) / Install new control panels, automatic level control and flow measurement using smart controller.	-28.5	-14,227	-5,164	-22	-10,976	-3,984	0.363
Crissey PS	Voies	199,500**	Install new Xylem CT3400/736 pumps	-17.0	-33,915	-2,272	-36.8	-73,500	-4,925	0.067
Briâre PS	Navigables	1,011,636	No action	-1.2	-11,629		-	-	-	0.067
Stock PS	de France	493,000**	Proposed pump replacement as VNF/Arcadis assessment	-30	-147,900	-9,909	-30	-147,900	-9,909	0.067
W6, W7, W8, W9, W13 combined	VLM	177,105	Pump replacement		-	-	-6.7	-11,931	-1,837	0.154
	TOTAL	5,136,486		-	-980,265	-250,069	-	-814,818	-199,977	-
	EU: <u>https://v</u> UK: <u>Updatee</u>	,	<i>values 'ata-and-maps/daviz/co2-emission-intensity-12/download.csv IS) greenhouse gas conversion factors database 2022 CSH Networks (s</i>	ustainablehe	althcare.org.uk)					

Table no. 23: Trial Site Energy and Carbon Assessment Summary

8 Phase 2 Conclusions

Implementation of the scope of works based on the recommendations from Phase 1 is estimated to reduce emissions by approximately 200 tonnes CO₂ equivalent (CO₂e) per annum based on 2021 emission factors. This comfortably exceeds the original target of 65 tonnes equivalent per annum.

By partner, the key actions undertaken at the trial sites are summarised as:

Canal and River Trust

- Reducing specific energy and increasing pump efficiency at Caen Hill PS by changing to single pump operation (duty / standby).
- Changing pumps to operate near best efficiency and upsizing local pipework at Calcutt PS
- Changing to more efficient pumps at Tinsley PS

Waterways Ireland

- Introducing automation by means of flow and level monitoring with smart controllers at all trial sites to allow remote monitoring and optimizing pump use.
- Upsizing local pipework and replacing pumps at Shannon Harbour Lock 36.
- Introducing VSDs to explore and optimise pumped flow rates.

Voies Navigables de France

• Replacing pumps based on duty and energy requirements and upgrading automation at Crissey PS and Stock PS.

VLM

• Replacing existing pumps with more modern and efficient pumps.

Due to limited potential improvements at Seend PS and Briâre PS which would have a long payback period, no action was taken for Phase 2 of the project.

Following the implementation of the improvements is completed it is recommended for the partners to continue monitoring the performance of the trial assets and audit other pumping station assets for potential improvement in energy consumption and CO_2e emissions.

Appendix A – LRM Pumping Station Assessment Summary for VLM

LRM pumping stations in VLM project region										
	w	6	w	7	,	W 8	W 9		W 1	3
Parameters	Existing Pumps	Proposed Pumps	Existing Pumps	Proposed Pumps	Existing Pumps	Proposed Pumps	Existing Pumps	Proposed Pumps	Existing Pumps	Proposed Pumps
Pumps & Motors Model	Melotte – no further specification available	Xylem -LOWARA Z612 01-4OS M; 0.55kW	P1: Flygt CP3127-180, 5,9 kW, cast iron impeller, P2: Flygt CP3152-181, 13,5 kW	P1: FLYGT Concertor N150-4900, 5.5 kW P2: Flygt NP 3153 LT 3~ 411, 13.5kW (200mm)	P1 + P2: Flygt CP3127- 180MT, 5,9 kW, cast iron impeller	P1 + P2: FLYGT Concertor N150-4900, 5.5 kW	Melotte 2C 71ZZ, 2,2 kW, bronze impeller	Grundfos SPE 30-2; 2.2kW, 2,2 kW, bronze impeller	Melotte 2F 239, 11 kW, bronze impeller	LOWARA 2895 02/2A- L6W - 13kW
No. & Configuration	1 - (Duty / Standby)	1 - (Duty / Standby)	2 - Duty / Standby	2 - Duty / Standby	2 – Duty / Standby	2 – Duty / Standby	1 - (Duty / Standby)	1 - (Duty / Standby)	1 - (Duty / Standby)	1 - (Duty / Standby)
Drives	Fixed	Fixed	Fixed	Fixed	Fixed	Variable Speed Control	Fixed	Fixed	Fixed	Fixed
	10	10.26	219.6	251.5						
Estimated Duty Flow Rate (m ³ /h)			320.4	392.8	219.6	234.0	23.4	28.6	73.8	77.76
Estimated Duty Head (m)	9.9	10.02	5.0	5.6	4.8	5.01	15.30	15.50	32.00	32.50
			7.2	7.7						
Estimated Overall Efficiency	34.1%	53.8%	51.9%	62.7%	51.9%	63.1%	52.5%	54.0%	58.5%	61.2%
	5 112/0	551070	43.5%	67.9%	51.570	0012/0	52.570			
Est. Specific Energy (kWh/m ³)	0.0804	0.0804	0.0260	0.0243	0.0252	0.0252 0.0216	0.0794	0.0782	0.1490	0.1447
			0.0392	0.0308						
Pumped volume in 2019 (m³)	45,540	45,540	777,123	777,123	1,376,665	1,376,665	205,968	205,968	651,225	651,225
Annual Energy Consumption (kWh)	3,662	3,662	25,346	21,401	34,695	29,785	16,363	16,110	97,038	94,216
Annual Difference In Energy Consumption with proposed pumps (kW-hr)		0		-3,945		-4,910		-253		-2,823
Annual Saving (%)		0.00%		15.57%		14.15%		1.55%		2.91%
Emissions (gCO2) @ Emission Factor (154 gCO2/kWh)	563,924	563,924	3,903,257	3,295,683	5,343,052	4,586,949	2,519,962	2,480,989	14,943,900	14,509,211
	Existing Pumps	Proposed Pumps	% Saving							
Emission Factor (154 gCO2/kWh)	27,274,093		Ŭ							
,										

Table 24 – LRM Pumping Station Assessment Summary for VLM

Ministerie van Infrastructuur en Waterstaat

