

MEDIUM RE-USE DURING PILOT SCALE ALGAE CULTIVATION FACILITATED BY SUBMERGED MEMBRANES (MAF-TECHNOLOGY)

Bastiaens, L.¹, S. Van Roy¹, Q. Simons¹, J. Verspreet¹, H. Sterckx¹, F. Vanhoof¹, F. Schoeters², S. Van Miert², C. Kuchendorf³, D. Reinecke-levi³

- VITO, Conversion and Separation Technologies department, Boeretang 200, 2400 Mol, Belgium. <u>leen.bastiaens@vito.be</u> 1. 2. Thomas More, Radius, Kleinhoefstraat, Geel, Belgium.
- Institute of Bio- and Geosciences/Plant Sciences (IBG-2), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, Jülich, Germany 3.

Introduction

- Medium recycling is needed to enable upscaling & to improve the economics of algae cultivation.
- Membrane technology can be used for: \bullet
 - Pre-harvesting activities & desalting
 - Medium recycling

Aim of the study = Long-term performance of the MAF-technology connected to pilot photobioreactors for continuous preconcentration of algae biomass and medium recycling.

Conclusions

- Continuous harvest with the MAF-technology was realized for \bullet Nannochloropsis sp., Scenedesmus sp. and Chloromonas typhlos:
 - > 95 % medium reuse & > 95 % recycling of salts demonstrated
 - > 95 % reduction on discharge of brackish water
- No negative impact on growth was seen due to recycled medium \bullet
- Stressed culture \rightarrow reduce MAF performance was observed \bullet
- Redosing of nutrients in recycled medium is important. \bullet

MAF-technology

- MAF = Membrane based Algae Filtration
 - Submerged membranes (UF & MF)
 - Pre-concentration factors of > 20 times are realistic
 - Algae densities reached: > 40 g/L OM
 - Computer controlled
- Working principle proven at lab and semi-pilot scale:

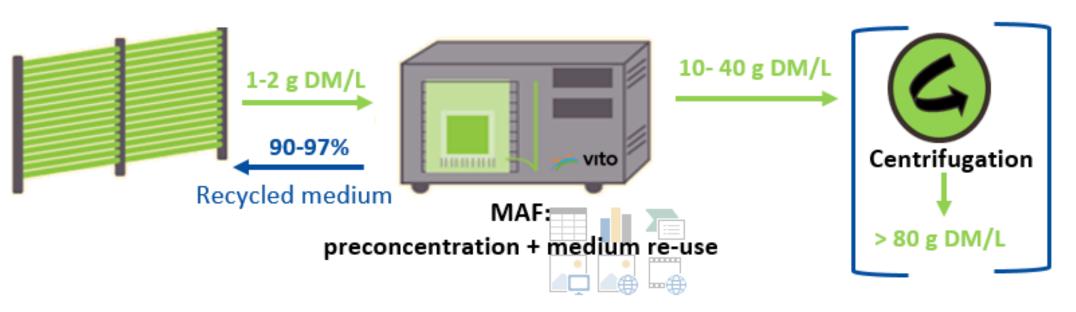


Figure 1: Continuous harvest with preconcentration of algae biomass via MAF-technology.

- Mild harvesting (low shear stress) ullet
- Required centrifugation capacity reduced > 10-20 times
- Continuous harvesting \rightarrow higher algae growth rates

Results Chloromonas

Set-up:

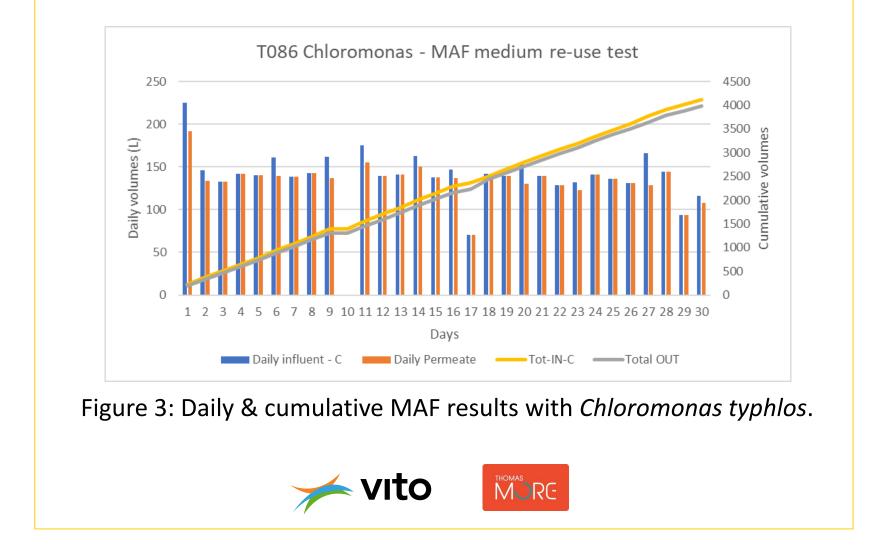

- MAF-2 (UF; 1,3 m² membrane surface)
- Linked to 1,5 m³ photobioreactor
- Fixed daily harvesting= 150 L/d (10%)

Figure 2: MAF connected to photobioreactor in Sunbuilt (Belgium)

Performance:

- Period: 2/2-4/3/2021
- 4,1 m³ harvested
- Average medium re-use: 95 %
- Average VCF = 20

Results Nannochloropsis

Set-up:

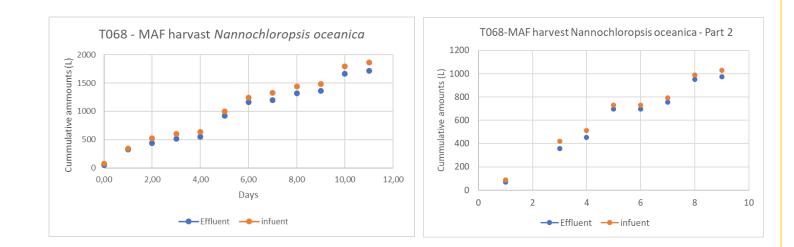

- MAF-2 (UF; 1,3 m² membrane surface)
- Linked to 1,5 m³ photobioreactor
- Turbidity guided harvest with
- Maximal daily harvest 300 L/d (20%)

Figure 4: MAF connected to photobioreactor in Sunbuilt (Belgium)

Performance:

- Period: 26/4-10/5/2021; 31/5-1/6/2021
- Average daily harvest: 123-108 L/d (< 10%) – turbidity limit
- Stressed culture from start by CO₂ supply issue & challenging nutrient dosing \rightarrow inorganic precipitated on membranes
- Average medium recycling: 91-95 %

Results Scenedesmus

Set-up:

- MAF-3 (UF; 2,7 m² membrane surface)
- Linked to 1.8 2.4 m³ photobioreactor
- Turbidity guided harvest
- Maximal daily harvest: 400-800 L/d (20-40%)

Figure 6: MAF connected to photobioreactor in Jülich (Germany).

Performance:

- Period: 8/6/2021 ongoing
- Harvested sofar: > 9500 L
- Average medium re-use: 95%
- Very good algae growth

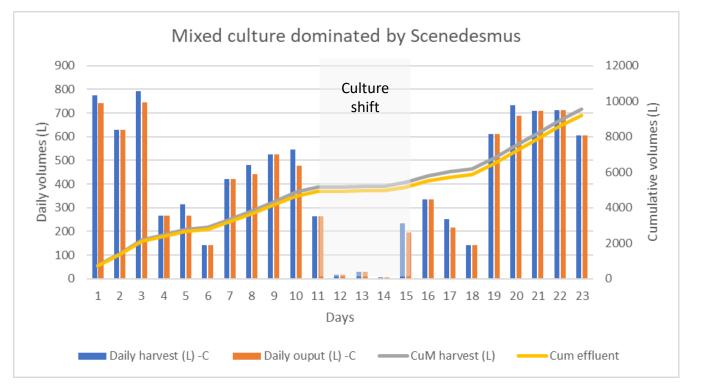


Figure 5: Cumulative MAF results with stressed Nannochloropsis.

Figure 7: Cumulative MAF results - Scenedesmus sp. dominated mixed culture.

