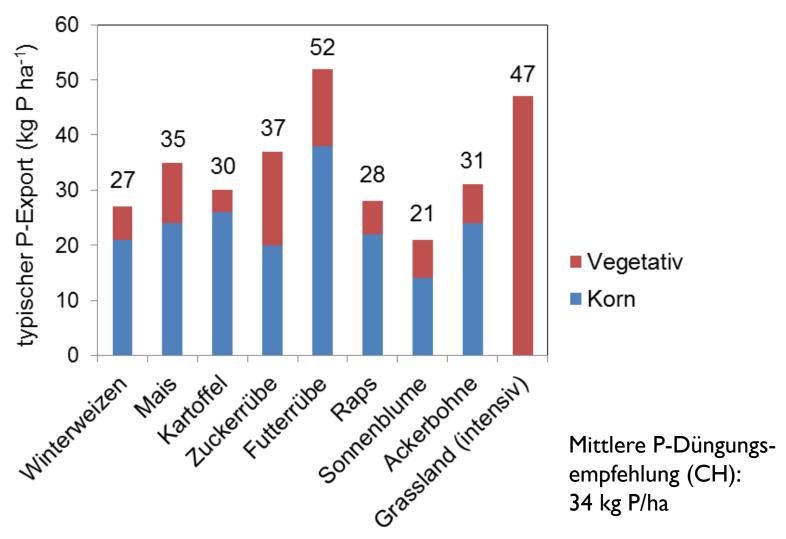


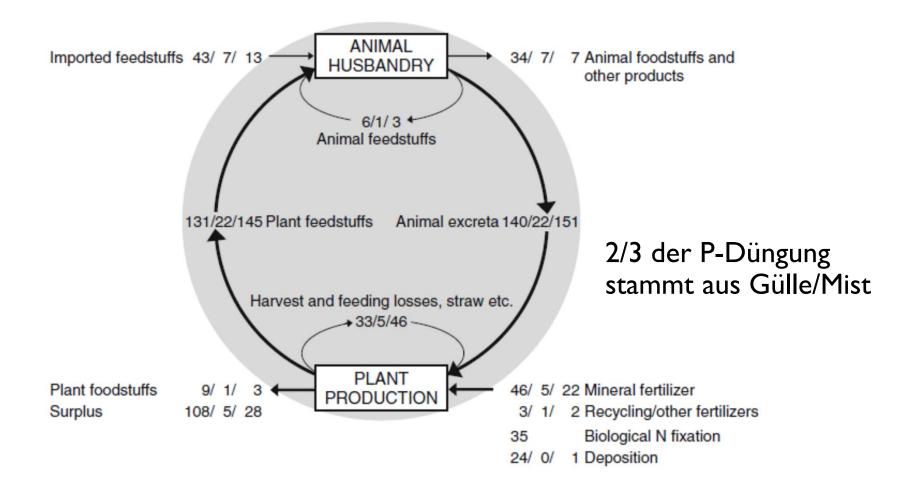
Pflanzenverfügbarkeit von Phosphor in Recylingdüngern


Else Bünemann (else.buenemann@fibl.org)
Europäischer Nährstoffevent
Basel
18.10.2017

Gliederung

- Pflanzenbedarf
- P-Düngewirkung verschiedener Recyclingdünger
 - Düngereigenschaften: Löslichkeit, P-Formen
 - Externe Faktoren: Boden, Pflanze, Ausbringung (Platzierung; zeitliche Wirkung)
 - Vorhersage der P-Düngewirkung
- P-Düngung in der Praxis

Bedarf wichtiger Kulturpflanzen an Phosphor



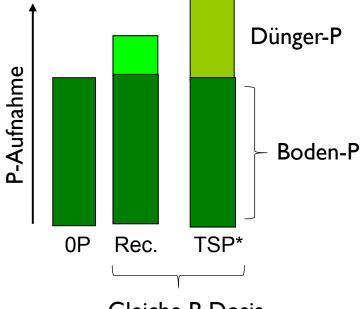
www.fibl.org

3

P-Einträge in die Pflanzenproduktion am Beispiel der Schweiz

Spiess, 2011

Bestimmung der P-Düngewirkung von Recyclingdüngern

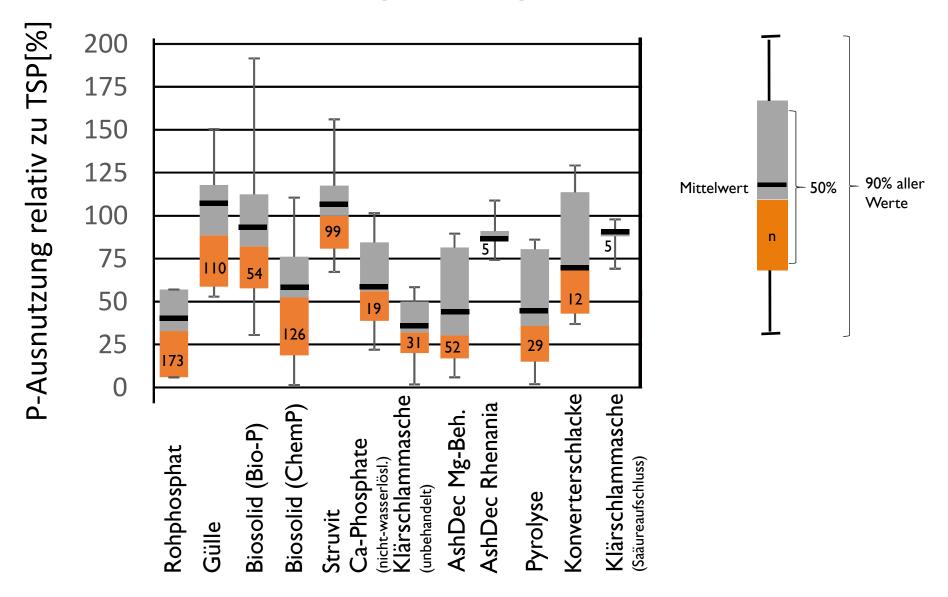


Fotos: E.Bünemann (FiBL),

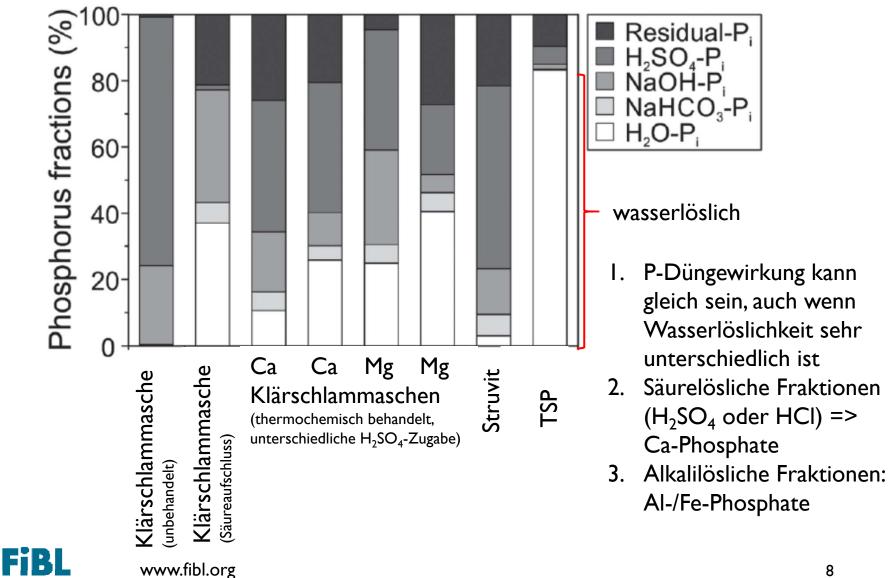
Differenzmethode: relative P-Düngerwirkung

Annahmen:

- P-Aufnahme +Dünger > 0P
- P-Aufnahme aus Boden bleibt gleich

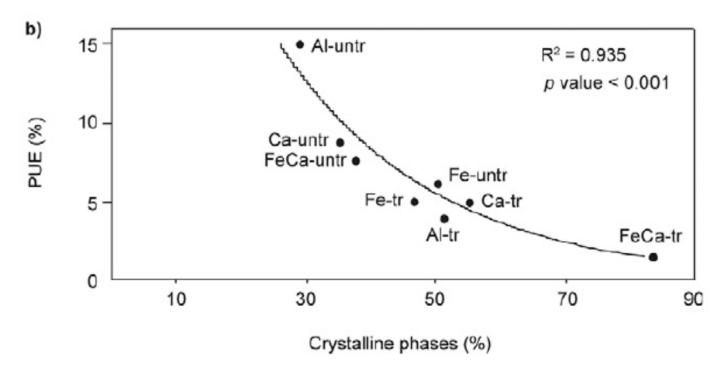


Gleiche P-Dosis


* statt TSP z.T. andere wasserlösliche Dünger verwendet

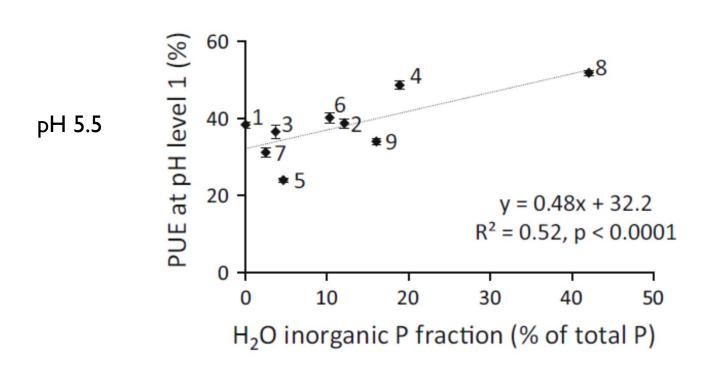
Relative P-Düngewirkung

Düngereigenschaften: Löslichkeit, P-Formen


Kristalline P-Phasen in Abfallprodukten

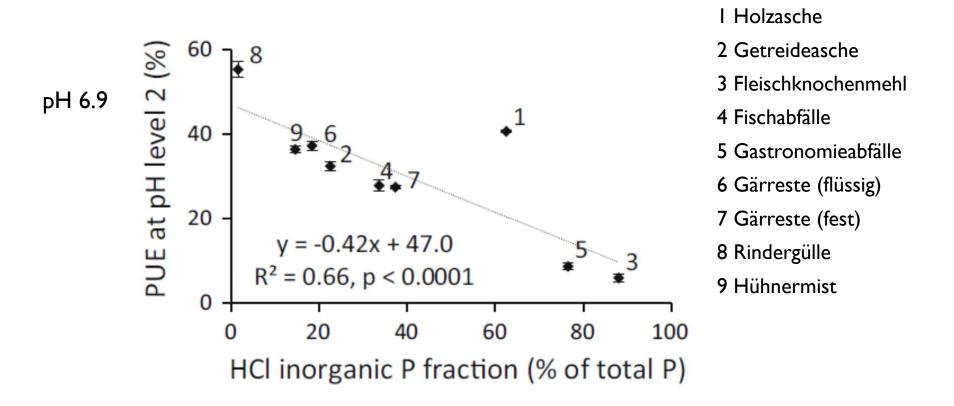
	Kristalline P-Phasen (XRD)	% of total P
Holzasche	Caphosphat-Silikate Na-Ca-Mg-Phosphate Hydroxyapatit	71
Getreideasche	Ca-K-Phosphate Struvite-K (KMg(PO ₄)) Beta-Lomonosovit Whitlockit	33
Fleischknochenmehl	Chlorfluorapatit Hydroxyapatit	52
Gastronomieabfälle	Chlor-Fluorapatit	25
Gärreste (fest)	Hydroxyapatit	7

=> v.a. Ca-Phosphate mit verschiedenen Löslichkeiten


Kristalline P-Phasen verringern die P-Düngerwirkung

- Klärschlammaschen: unbehandelt (untr) vs. thermochemisch mit CaCl₂ behandelt (tr);
 Al- oder Fe-Salze oder Kalkung zur Ausfällung/Stabilisierung des
- P-Düngerwirkung sinkt mit Zunahme kristalliner P-Phasen wie Chlorapatit und Hydroxyapatit

Externe Faktoren: Boden-pH



- I Holzasche
- 2 Getreideasche
- 3 Fleischknochenmehl
- 4 Fischabfälle
- 5 Gastronomieabfälle
- 6 Gärreste (flüssig)
- 7 Gärreste (fest)
- 8 Rindergülle
- 9 Hühnermist

• In einem sauren Boden ist wasserlöslicher P positiv mit P-Düngerwirkung korreliert

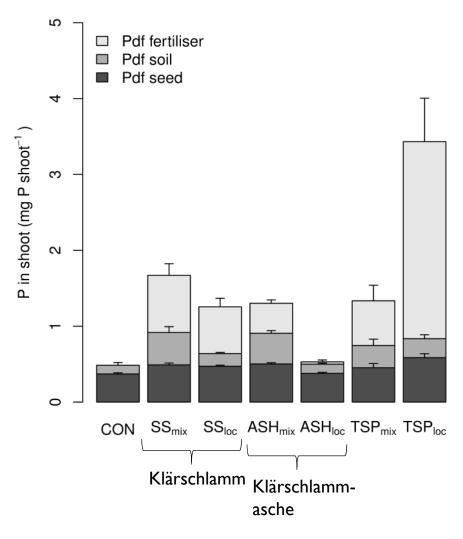
Externe Faktoren: Boden-pH

• In einem neutralen Boden ist HCI-löslicher P negativ mit P-Düngerwirkung korreliert

Brod et al. 2015 Nutr. Cycl. Agroecosyst.

P-Düngung im Biolandbau: zugelassene Handelsdünger sind kaum wirksam auf alkalischen Böden

- Topfversuch mit Raigras auf einem sauren und einem alkalischen Boden
- Rohphosphat, Fleischknochenmehl: nur im sauren Boden wirksam
- Hühnermistpellets und PK-Dünger aus Alkalipyrolyse: Wirksamkeit unabhängig vom Boden



Abhängigkeit der P-Verfügbarkeit von der Pflanze

• z.B. Buchweizen zeigt Potenzial zur P-Mobilisierung aus Ca-Phosphaten (hoher Ca-Bedarf)

Düngerausbringung: Platzieren oder Einmischen?

- Lokalisiertes TSP wird besser genutzt, aber für Klärschlammasche gegenteilige Wirkung
- ⇒ Interaktion Dünger-Boden für Löslichkeit komplexer Dünger entscheidend

www.fibl.org

Lemming et al. 2016 PLSO

Sofortige Wirkung vs. Vorratsdüngung

• Topfversuch mit Raigras: 4 Schnitte

Waste/manure product	Harvest 1	Σ Harvest 2, 3 and 4	
pH level 1			•
Wood ash	51de	85b	
Cereal ash	76bc	73bc	
Meat bone meal	67cd	71c	
Fish sludge	91ab	99a	Relative P-Düngerwirkung steigt für viele Recyclingdünger mit der Zeit an
Catering waste	28f	53d	
Liquid digestate	81bc	75bc	
Solid digestate	45ef	66cd	
Dairy manure	111a	100a	
Chicken manure	67cd	62cd	

Vorhersage der P-Düngewirkung

- Gute Korrelation auf zwei Böden (pH 5.1 und pH 7.7) zwischen relativer P-Düngewirkung verschiedener Recyclingdünger und Summe P austauschbar und NaHCO₃-extrahierbar
- Ähnliche Ergebnisse mit 2% Zitronensäure

Schlussfolgerungen

- Wasserlöslichkeit ist nicht entscheidend
- P-Düngewirkung häufig abhängig vom Boden-pH

... und P-Düngung in der Praxis:

- Technische Anforderung: Granulierung (Düngerstreuer)
- 2. Rasche Wirksamkeit vs. langsame Freisetzung
- 3. Anreicherung von P im Boden (N/P-Verhältnis beachten, Düngung nach verfügbarem Anteil)

