

European Regional Development Fun

RESSOURCEN- UND MATERIALEFFIZIENZ

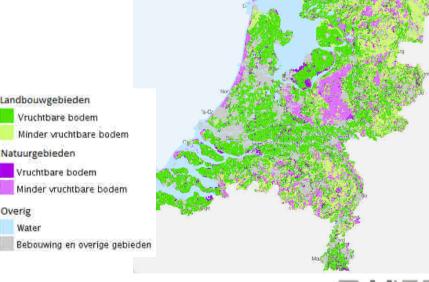
Dutch Experience of sludge management

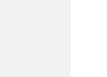
and P-recovery pathways

Environ 2018 - 28 March 2018, Cork, Irelands

Josien A. Ruijter, MSc, HVC

Content


- 1. Sewage water treatment in NL
- 2. Sludge management
- 3. P-recovery pathways



1. Dutch water management

- Small country (17 milj inhab, 41.500 km² =, 2 x smaller dan Ireland), delta area, fertile soils
- 4 levels of governments:
 - National (deep underground > 500 m, national water bodies)
 - Provinces (management of groundwater)
 - Municipalities (ground water in urban areas, sewerage systems)
 - 22 Water authorities \rightarrow oldest WA > 762 years old!
- Water authorities responsibilities:
 - Water quantity (agriculture!)
 - Flood protection (dikes/dams)
 - Treatment of sewage water
 - surface water quality

1. Environmental Laws & regulations

Industrialisation

 1875: Hinderwet (about "danger, damage and annoyance")

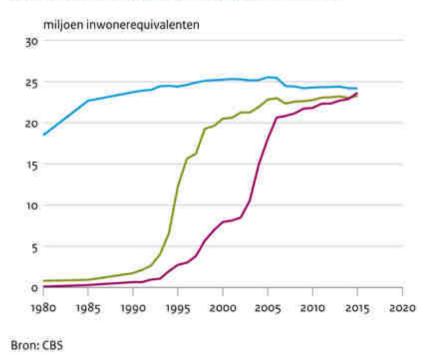
Increased population pressure, pollution, Rhine is sewer of Europe, after WWs construction of SWTPs, eutrophication of surface waters

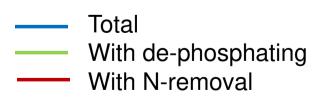
 1970: WVO (Law on pollution of surface water) → pollutor pays principle!

Increased awareness and improved environmental management

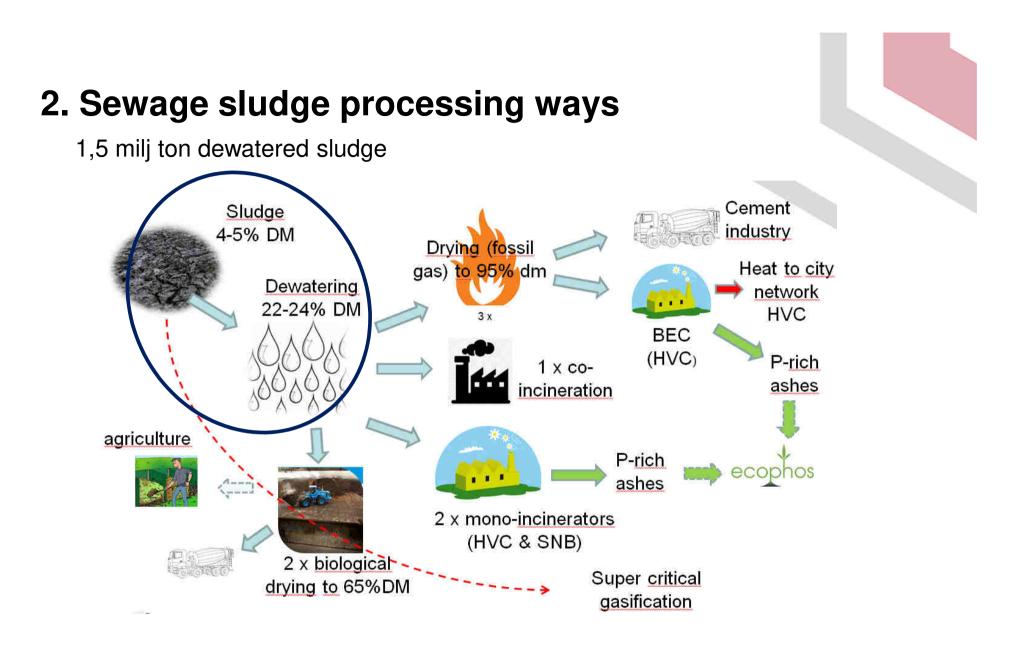
2009: Waterwet (Water law)

1. Trends WWTPs In Netherlands

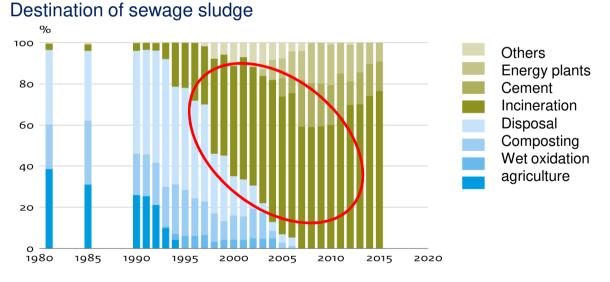

- 330 SWTPs , > 99% of municipal waste water is treated
- After 1996 law → adjustment of SWTPs wrt P and N removal
- More biological treatment, less chemical use


B Haalt meer uit slib! __

• 50% of sludge is digested



Capaciteit van rioolwaterzuiveringsinstallaties



2. Trend of sludge processing in NL

- Since 1 Jan 1995 ending of sludge to agriculture (decree on quality and use of 'other' nutrients). Disposal of sewage sludge is strongly limited by regulation (1997).
- Dutch Water authorities took initiative to set up 2 sludge mono-incinerators, started operations in 1993 and 1995:
 - SNB (5 water authorities in prov of Brabant)
 - HVC (5 water authorities in West-NL)

Bron: CBS

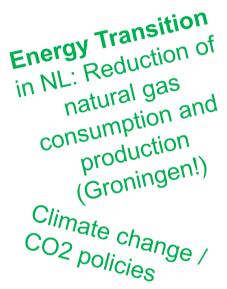
CBS/mei17 www.clo.nl/nlo15418

2. Current situation on sludge processing in NL

- Mono-incineration (50%, 2 plants SNB & HVC)
- Drying and co-incineration (in Bio-Energy Plant/HVC, and in and cement plants) (25%, 4 plants)
 - Composting (biological drying) and co-incineration in power plant (19%, 2 plants)
 - Co-incineration in MSWI (6%, 1 plant)

	turbine	zuurstof the second se
droger	Start operations Capacity Process	1993 (HVC), 1995 (SNB) 55.000 ton OM (HVC) / 60.000 ton OM(SNB) Disk dryers fluidized bed furnaces 850-950°C – Lime dosing in furnace (snb) Electrostatic Precipitators- acid scrubber- alkaline scrubber- activated carbon filters for mercury removal, bag filter. Scrup water to own chemical IWTP. Effluent to urban WWTP. Filter cake with heavy metals to special landfill site. Activated carbon treated to recycle mercury.
	Energy & resource recovery	steam for dryers; Turbine to produce Electricity; heat to urban WWTP for better Nitrogen removal. Salt &ammonia recovery (snb)

3. Ambitions Dutch water authorities


SWTP as resource of energy and recovery of valuable elements:

- Energy
- ALE
- Cellulose
- Bioplastics/PHA
- (rare) metals
- Phosphate

From condensate effluent sludge incin

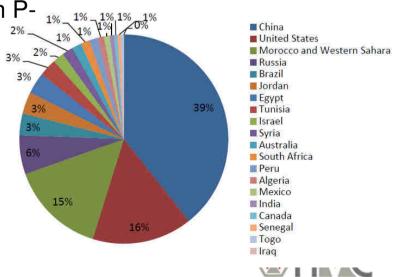
From fly ashes of SNB & HVC

Super critical gasification of sewage sludge


Waste to energy Resource from waste

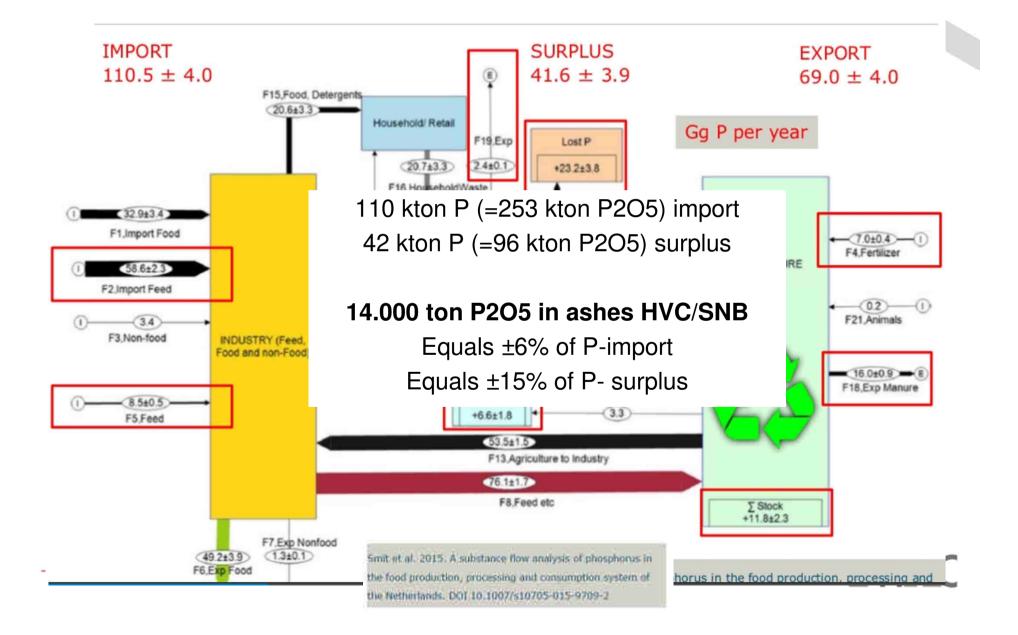
3. Sewage sludge fly ashes

- HVC 22.000 ton ashes/y 25-27% P2O5
- SNB 35.000 ton ashes/y 20-22% P2O5
- \rightarrow 14.000 ton P2O5/y



3. Global P-market

- Largest producers: China, Morocco, US, Russia, middle east (>70% of world's total)
- Largest importers: India, EU, Indonesia, US, Brazil
 - Environmental issues with P-rock mining (Cd, Uranium, high water consumption)
 - Decrease in quality of P-rock
 - Geo-political uncertainties
 - P on EU list of critical materials
 - EU's ambition to become less dependant on Pimport
 - Increase P-efficiency in agriculture
 - Stimulate P-recovery
 - regulations
 - EU-programma's (Phos4You)



Phosphorus flows in NL for 2011

3. P-recovery: ash-route or struvite-route?

Struvite (ammonium magnesium phosphate)

- P-removal on WWTP with sludge digestion
- produced struvite 2500 ton/y in NL
 - Direct use or mixed with conventional fertilisers
 - Market: new product, prices low or fluctuating
 - Struvite as waste can be traded as nutrient/fertilizer
 - No general EU end-of-waste regulation, so for each situation separately to be defined.
 - Strict monitoring on pathogens needed
 - Struvite production at SWTP affects sludge incinerators and fly ash quality!
 - Re-shaping of EU fertiliser regulation: in preparation for criteria voor struvite, biochar en fly ashes (Joint working groep STRUBIAS)

PhosPpaq, Anphos, Pearl, Crystallactor: reject water or stripper water

Airprex: from sewage sludge

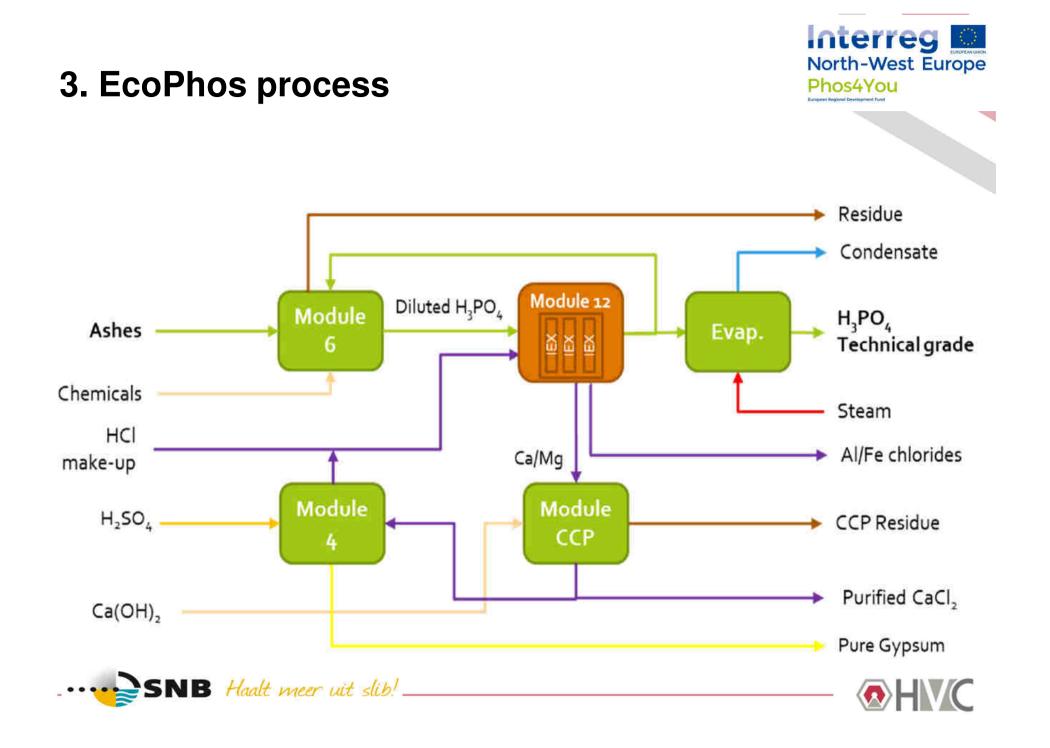
3. P-recovery: fly ash-route

- HVC & SNB: 57.000 ton/y SSA
- 20-27% P2O5 in fly ahses
- 14.000 ton P2O5/year
- Allowed to be exported
- No pathogens
- Quality strictly monitored
- Additional recovery of AI and Fe salts
- Waste status
- Re-shaping of EU fertiliser regulation: in preparation for criteria voor struvite, biochar en fly ashes (Joint working groep STRUBIAS)

HVC & water authorities WWTPs: keep struvite in sludge, as to guarantee high % of P in SSA!

3. EcoPhos proces

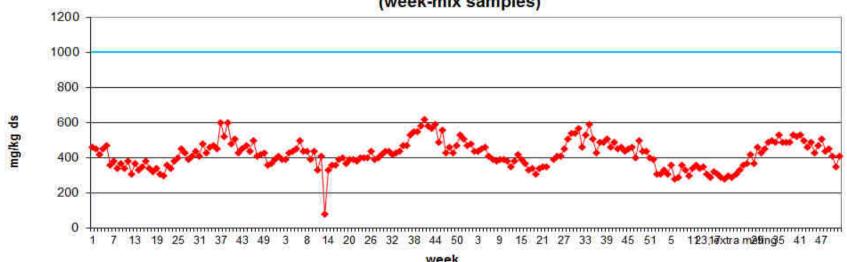
- Cooperation since 2009. Plan to start to deliver SSA to new plant in 2020.
- Valorization of low-grade phosphate rock and secondary phosphate resources such as SSA on the basis of soft digestion by phosphoric acid
- Modular process:
 - Flexible wrt raw materials quality
 - Capable to produce a variety of products (fertilizer, feed and food grade phosphoric acid (PA), animal feed (DCP and MCP) and solid or liquid NPK fertilizers).
- Robust process
- No expensive chemicals and equipment
- Yield > 90% P2O5
- Advantage of SSA: less Cd en no uranium



Interreg

Phos4You

North-West Europe

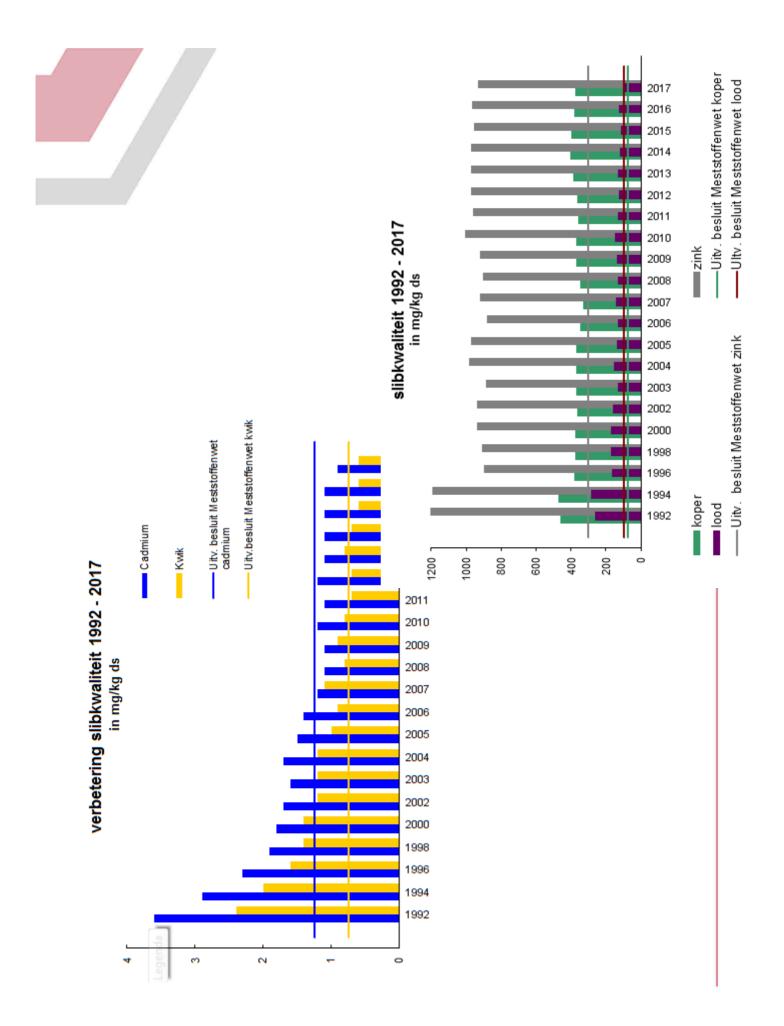

Eleme		Typical	Typical LG	Sandard
nt		Fly ash	rock	grade rock
P205	%	23.6	20-27	30-36
e S	%	12.7	35	35
Si	%	10	1.1	0.9
A	%	9	0.2	0.75
Fe	%	9.4	0.9	0.05
Mg	%	1.7	0.9	0.04
¥	%	2.2	0.09	0.02
Na	%	0.77	Ħ	0.5
As	bpm	35	9.3	16
B	mdd	3.8	49	14
5	bpm	130	200	120
5	mdd	1200	200	28
IN	mdd	67	125	17
Pb	mdd	250	21	5.7
F	mdd	2900	160	360
Zn	mdd	3300	230	190
ш	%	•	3.2	3.9
S04	%	7.7	2.7	\$
TOC	%	•	3.35	0.3
C02	%	0	7.2	5

3. Quality Monitoring SSA

- Weekly mixed sampled analysed by independent laboratory
- (heavy) metals (ICP-MS)
- Twice per year in weekly mixed samples: dioxines
- Since 2014 all samples are stored

SNB Haalt meer uit slib!_____

Seasonal fluctuations!


Pb in the ashes of the SVI Dordrecht in 2014-2017 (week-mix samples)

Interreg

Phos4You

North-West Europe

Conclusions & recommendations

- Sludge quality is reflected in ash quality
- More insight in sludge quality needed \rightarrow why seasonal fluctuations?
- More knowledge needed on effects of struvite production on sludge incineration (N in condensate effluent from SIP)
- Recovery of (rare) metals from SSA
 - Fe & Al chlorides via EcoPhos process
 - other valuable metals to be considered
- Clear regulations on application in EU needed (STRUBIAS)
- Mono-incineration is still state of the art!

We deliver Phosphorus made in Europe

