

Re-use

How can geophysical methods help to characterize landfills?

Focus on Onoz landfill

David Caterina, Itzel Isunza Manrique, Frédéric Nguyen

Agenda of the presentation

- A short introduction to geophysics
- Landfill investigation
 - Context
 - Extension
 - Composition
- Landfill monitoring
- Take home message
- Landfill of Onoz

Agenda of the presentation

- A short introduction to geophysics
- Landfill investigation
 - Context
 - Extension
 - Composition
- Landfill monitoring
- Take home message
- <u>Landfill of Onoz</u>

A short introduction to geophysics: Objectives

Mapping spatial variations in:

- Lithology/waste type/density
- Water content
- Pore fluid or total dissolved solids
- Mechanical properties
- Metallic content

Monitoring changes in:

- Waste/contaminant mass
- Tracer concentration
- Amendement injection
- Compaction/density/porosity
- Gas production

Translate the geophysical variations or changes into property of interest assuming a relationship.

RAWFILL

DOC SAID HE COULD GIVE YOU A CAT SCAN BUT HE WANTS TO TRY IT THIS WAY FIRST!

Why geophysics?

Example: contaminant detection

Classical approach

Classical approach

With geophysics... (here ERT)

Pro and cons

- Non to minimally invasive
- Relatively low cost
- Large coverage
- See through technology

- Indirect information
- Resolution decreases with depth
- Prone to modeling errors (artefacts)

Different methods...

Different targets...

A combination of different methods is recommended to reduce uncertainties

The main phases of a geophysical investigation and associated costs

- Pre-investigation and feasibility
 - Set-up
 - Properties
 - Surveys

Measurements on site

- Data quality control
- Possible interferences

Data processing and interpretation

- Image appraisal
- Complementary data
- Report synthesis

- Desk study
- Equipment preparation and depreciation
- Field study
 - Transport to and on site
 - Data acquisition
 - Accomodation
- Desk study

A lot of pragmatism too: site access, logistics, near-surface objects (cables etc...)

Agenda of the presentation

- A short introduction to geophysics
- Landfill investigation
 - Context
 - Extension
 - Composition
- Landfill monitoring
- Take home message
- Landfill of Onoz

Applied geophysics and landfills

Query performed 03/02/2018: (TITLE-ABS-KEY(landfill* AND geophysic*))

Scopus # with landfill* AND geophysic*

Book chapter by Soupios and Ntarlagiannis (2017) <u>Dedicated development</u> (e.g. Audebert et al., 2014; Konstantaki et al., 2016; Dumont et al., 2016; van de Vijver 2017)

Europe leads the way!

Scopus # per geographical area

Physical properties of wastes: solid part

Municipal solid waste composition example :

- 2,5% 3,5% metal
- 15-40% aggregates
- Organic material —
- Plastic _____

→ valuable
 → recycled concrete
 → landfill biogas
 → alternative fuel

Electrical resistivity: $1-100~\Omega m$

Magnetic susceptibility : 0,02 SI

Density: 0,9 – 1,6

Dumont (2017)

Physical properties of wastes: liquid part

Water content

 Mass loss after drying 10 – 55 % weight

Leachate conductivity

- Use of 15 tons press 7000 – 35000 μS/cm
 - → occurrence of perched water table
 → saturated zone at 15 m depth

Physical properties of wastes: liquid part

Physical properties of wastes

Generally, geophysical properties contrast well with the surrounding environment

- Leachate ionic strength and temperature increase > low electrical resistivity (0.5-30 Ω m)
- Metal scraps and redox reactions > high chargeability and selfpotential (100s mV/V, 100s mV)
- Ferromagnetic objects > κ 2-4 orders of magnitude larger than sedimentary rocks
- Low compaction > lower density 1-2 t/m³ and lower elastic moduli (Vp~180 m/s to 1450m/s)

Agenda of the presentation

• A short introduction to geophysics

Landfill investigation

- Context
- Extension
- Composition
- Landfill monitoring
- Take home message
- Landfill of Onoz

Landfill investigation: extension

Average driving speed 7.3 km/h

Agenda of the presentation

• A short introduction to geophysics

Landfill investigation

- Context
- Extension
- Composition
- Landfill monitoring
- Take home message
- Landfill of Onoz

Landfill investigation: Composition

Towards quantitatvie spatial distribution of leachate property : petrophysics

Volumetric Water Content 0.

Landfill investigation: Composition

• Towards quantitative spatial distribution of leachate property

Agenda of the presentation

- A short introduction to geophysics
- Landfill investigation
 - Context
 - Extension
 - Composition

Landfill monitoring

- Take home message
- Landfill of Onoz

Landfill monitoring

(d)

Waste deposit cell 4

Les Champs-Jouault experimental site

 Household waste, non-hazardous industrial waste

Landfill monitoring

(Audebert et al., 2014; 2016)

10 20 30 40 50 60 70 80

 V_{inj} (m³)

Agenda of the presentation

- A short introduction to geophysics
- Landfill investigation
 - Context
 - Extension
 - Composition
- Landfill monitoring
- Take home message
- Landfill of Onoz

Take home message

- Not a silver bullet (no universal response), it needs to be assisted by complementary data
- Go/No go pre-feasibility using pre-modeling should be standard procedure

On landfills :

- Landfills Hor./Vert. delimitation is demonstrated > multi-methods very efficient
- For composition quantification: requires careful and dedicated processing and laboratory petrophysics
- Geophysical monitoring can follow leachate injection, membrane leaking
- To follow **biodegradation is more challenging** in the long term

Agenda of the presentation

- A short introduction to geophysics
- Landfill investigation
 - Context
 - Extension
 - Composition
- Landfill monitoring
- Take home message
- Landfill of Onoz

Site overview

History:

- 1902-1967: Quarry, limestone extraction
- 1967-1976: Deposit ashes & lime
- 1982-1987: waste from construction sector, tyres, rubber...
- 2004: 750t of tires removed by SPAQuE

Today...

Site description

Site elevation

- 20 m of ashes in the upper part
- 4-? m of waste + lime in the bottom part

Goal of the first survey:

- 1. Estimate extension and boundaries of the waste
- 2. Identify ashes and lime
- 3. Leachate?

Methods – Survey design

Mapping methods:

- Electromagnetic survey (EM)
- Profiling methods
- ERT/ IP

Fieldwork done - covering

EM survey

ERT/ IP

Results EM

RAWFILL

Results ERT/IP

Results ERT/IP

Preliminary conclusions

- The lateral extent of the zone containing the ashes is clearly visible in the EM images
- ERT models allow to clearly highlight the boundary between the limestone bedrock characterized with high electrical resistivity and the lime/waste deposits. The depth of lime lenses still need to be check

nterreg **EUROPEAN UNION** North-West Europe RAWFILL

European Regional Development Fund

Thank you!

Raw materials recovered from landfills

The Interreg North-West Europe Project is coordinated by SPAQuE and unites 8 partners from 4 EU regions.

British Geological Survey