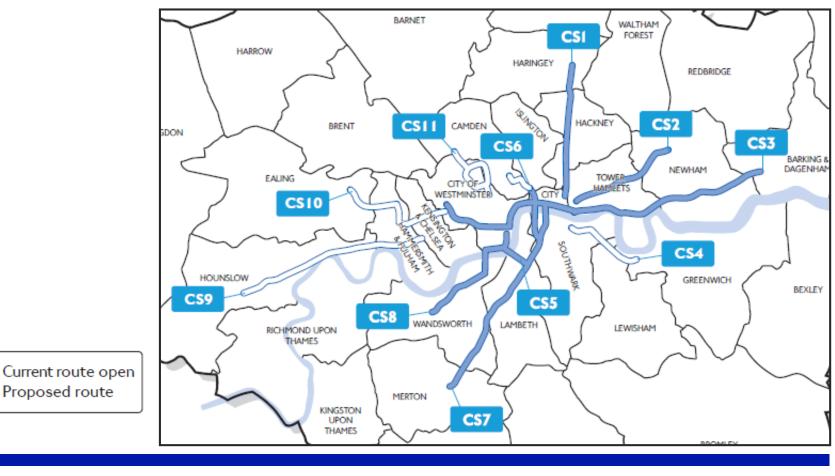
Network Operation: Construction and Optimisation


1

Overview

- Managing the network during Cycle Superhighway construction
- Optimising the network for cyclists including Cycle SCOOT

Construction: Challenges

- Challenging traffic management
 - Loss of lanes
 - Additional stages
- Temporary signals

- Protect bus network
- Maintain a high standard of safety at junctions for all road users

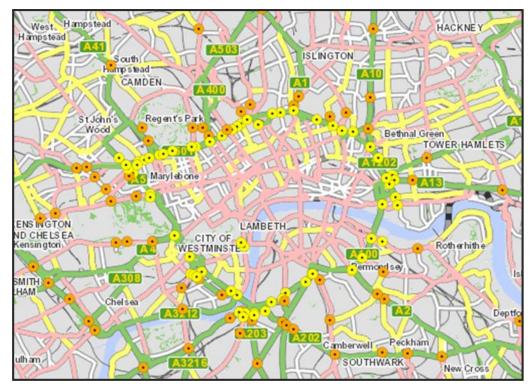
Construction: Review Traffic Management

- Scheduling of works (conflicting works/events e.g. Marathon)
- Review traffic management / diversions
- Review need for temporary traffic signals

Construction: UTC Temps

Tool:

 Offers flexible signal head location but maintains UTC control



- Change signal timings by time of day
- React to contingency situations
- Maintain offsets between junctions

Construction: ATM

Tool:

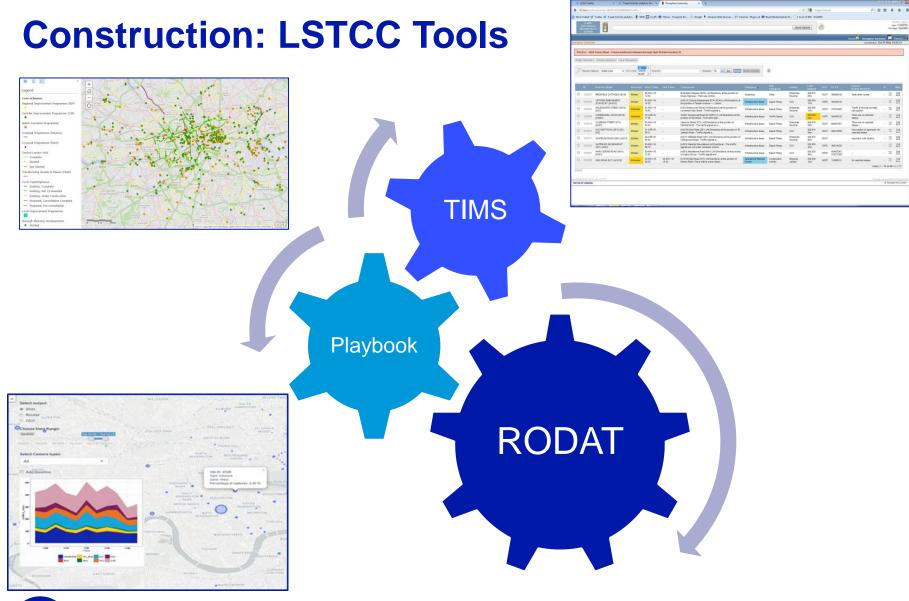
 Control flow of traffic approaching major works

- Use appropriate level of ATM to manage flow of traffic for specific TM phase
- Prevent exit blocking and protect major gyratories
- Protects bus network

7

Active Traffic Management (ATM) Video

Construction: London's Street Traffic Control Centre (LSTCC)


Tool:

- 24/7 monitoring and managing of the network
- Engineer present from
 7am-7pm and additional stand up for major works

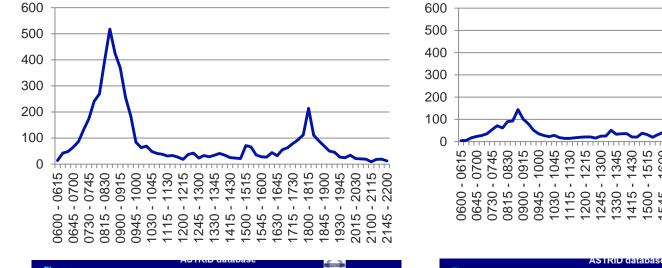
- Monitor network and bus delays in real time
- Select appropriate signal strategies
- Review level of ATM required

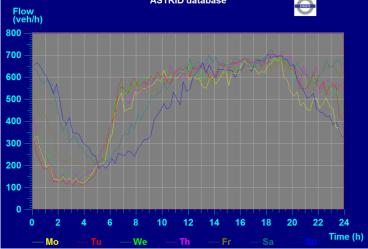
EVERY JOURNEY MATTERS

9

Construction: LSTCC Tools

Bus Disruptio History User Guid Settings About		on Monitor							MENU
Disru	uption List - Abov	e 15 (mins)				Yellow (M Ora Refr	DELAYS CC oderate = le nge (Seriou Red (Se eshed at: 10: ceds from: 7:	ess than 20 us = 21 - 40 evere = 41- 37:55 AM 6	0 mins 0 mins <mark>⊦ mins</mark> 6/1/2017
Route	Towards	From Stop Point Name	To Stop Point Name	P2P Delay (mins	Delay	alTrend (mins)	Time First Reported	t Data Las Updated	t More
<mark>65</mark> [RATP]	CHESSINGTON WORLD OF ADVENTURES	GILDERS ROAD	CHESSINGTON WORLD OF ADVENTURES	46 32	53	No change [0]05:48:05	07:23:27	í
362 [GOAHD	KING GEORGE HOSPITAL	MANOR ROAD	THE LOWE	25	29	No change [<mark>0]</mark> 07:03:22	07:18:14	í
12 [GOAHD	DULWICH LIBRARY	CONDUIT STREET / HAMLEYS TOY STORE	HAYMARKET / CHARLES II STRE	ET 15	19	Worsening [4] 07:18:28	07:18:19	í
173 [ARRIVA	BECKTON BUS STATION	RENWICK ROAD	RIPPLE ROAD	<mark>₹15</mark>	16	No change [<mark>0]</mark> 07:03:22	07:23:29	í

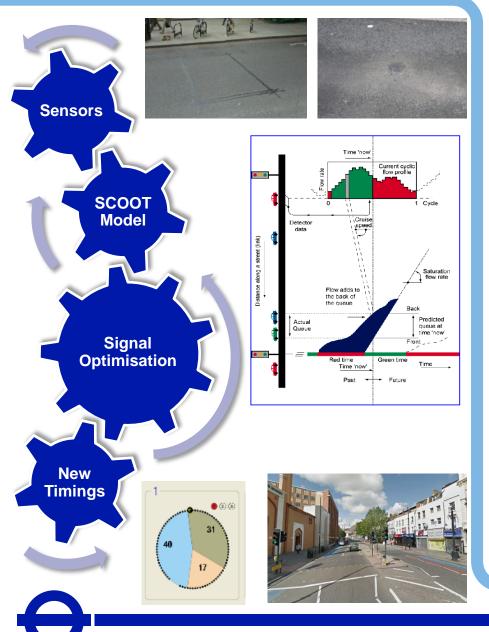

Network Optimisation



Optimisation: Challenges

Blackfriars Junction: Cycle and Traffic Peaks

Ň


SCOOT: What is it?

TfL uses a bespoke Urban Traffic Control (UTC) system to optimise throughput and combat congestion on London's road network

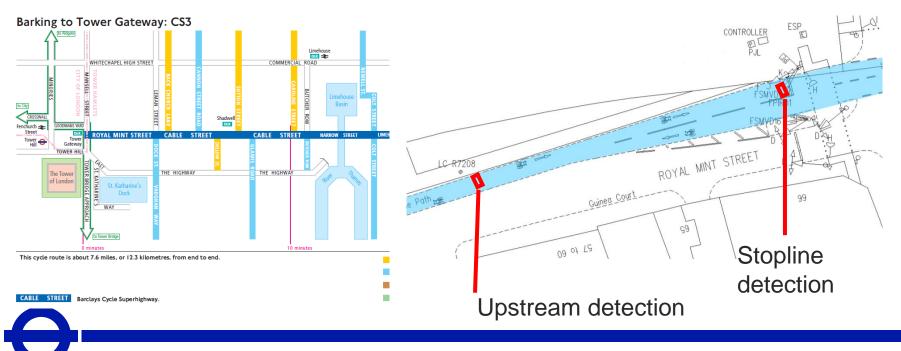
SCOOT is the software used to optimise signal timings second by second using real time data collected by sensors located on London's road network

SCOOT can now be used to optimise for general traffic, buses, cyclists and pedestrians.

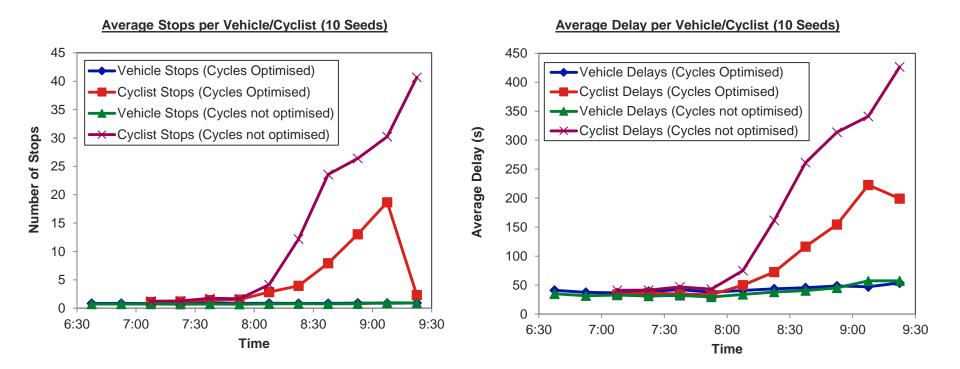
14 NETWORK OPERATION: CONSTRUCTION AND OPTIMISATION

SCOOT: How does it work?

- Data gathered from sensors in the road network
- Junction modelled second by second within SCOOT
- Buses and their location in the queue are also modelled
- Signal timings optimised to make best use of available capacity
- New timings sent to junction controller


Cycle SCOOT

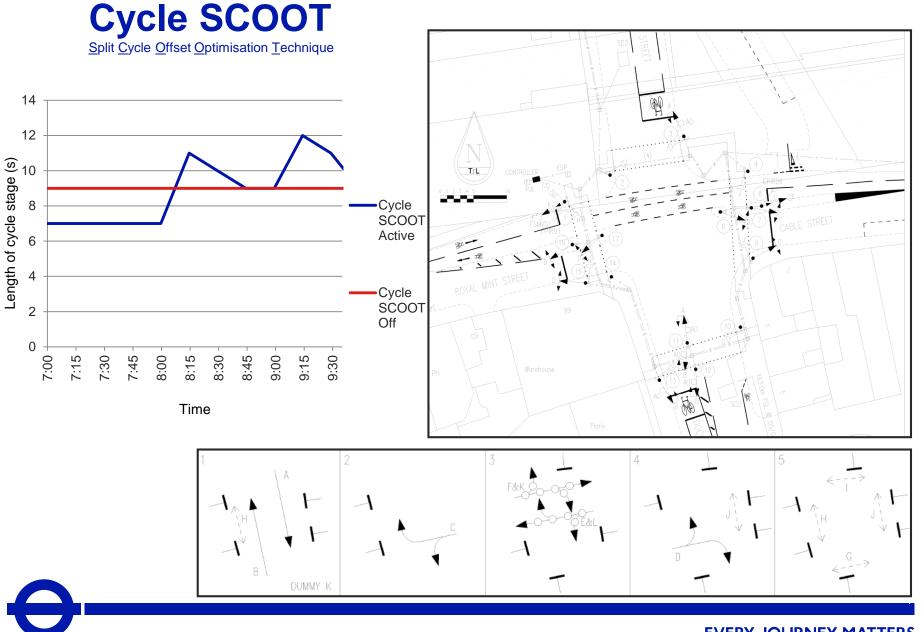
Two directional detectors for cyclist with their own track


Incorporating the demand of cyclist in the normal optimisation of the junction through SCOOT.

Using SCOOT "normal" and "stopline" traffic links

Cycle SCOOT Split Cycle Offset Optimisation Technique

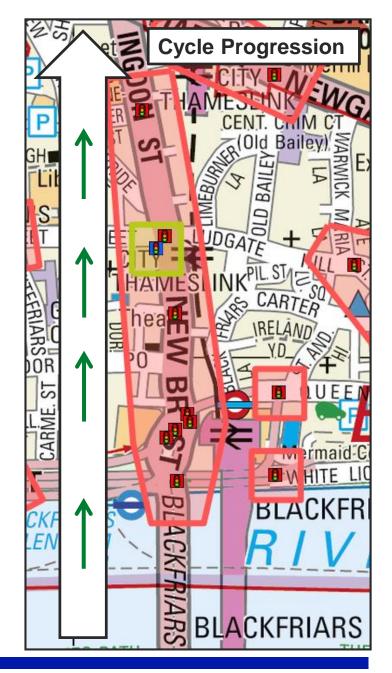
A UTC-VISSIM Study showed that SCOOT optimisation for cyclists can result in significant reductions for cyclists in terms of delays and stops, with no significant adverse impact seen for vehicles. This is now being observed on street.



Cycle SCOOT Benefits

• On average we saw a 6% reduction in cyclist delay and 1% reduction in cyclist stopped at Cycle SCOOT trial sites

Peak	Cycle Time	Delay per Vehicle	% of Vehicles Stopped	Junction Average DoS	Peak Flow		DoS	Flow	Delay per Cyclist	% of Cyclist Stopped
						AM	-25.36%	-2.77%	-46.22%	-2.76%
AM	0.46%	-0.86%	-1.02%	-6.62%	-5.81%	OP	-4.86%	0.19%	-2.83%	-1.43%
OP	0.67%	3.84%	-0.17%	-3.66%	-7.22%	РМ	-10.97%	7.25%	-36.32%	-3.16%
PM	0.34%	5.14%	0.09%	-4.09%	-8.78%					
LE	0.35%	-1.57%	-1.36%	-3.12%	-1.58%	LE	-1.73%	6.52%	-8.58%	-5.05%
ON	0.37%	0.77%	-3.24%	-3.48%	-4.22%	ON	15.88%	-7.20%	17.95%	0.88%
					7.2270	Average	-5.41%	0.80%	-15.20%	-2.30%
Average	0.44%	1.47%	-1.14%	-4.19%	-5.52%	40% of benefit measured			-6.08%	-0.92%



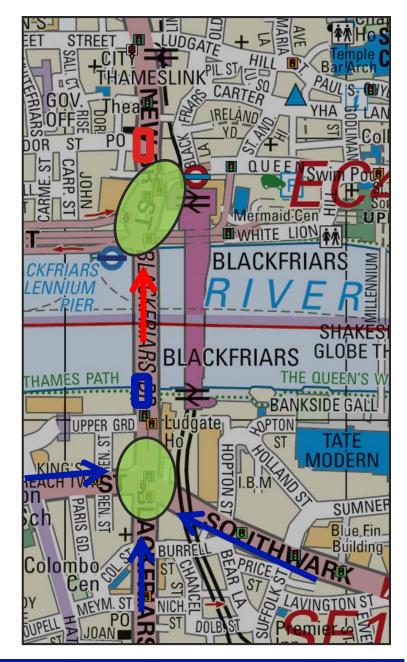
Optimisation: Offsets Blackfriars to Ludgate Circus

Tool:

- Cycle SCOOT
- Manual setup of SCOOT parameters

- Reduce cyclists wait time
- Improved compliance with signals

Optimisation: Blackfriars to Ludgate Circus Video



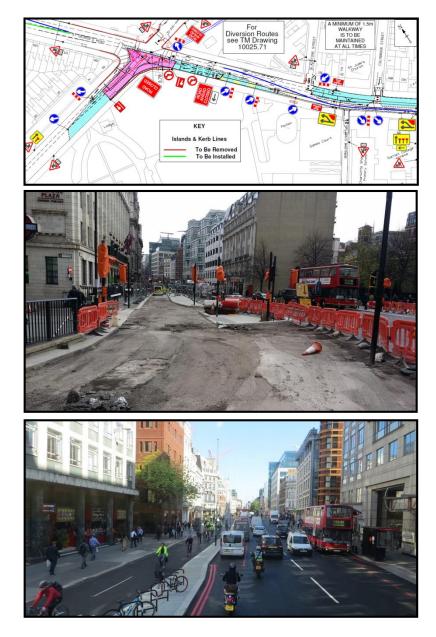
Optimisation: SASS -System Activated Strategy Selection

Tool:

Logic dependent signal timings

- Dynamically change signal timings to manage congestion and exit blocking
- Useful in oversaturated networks

22 NETWORK OPERATION: CONSTRUCTION AND OPTIMISATION **Summary**


Construction

- Review traffic management
- UTC Temps
- Monitor network
- Active Traffic Management

Optimisation for Cyclists

- Cycle SCOOT
- Cycle stage lengths
- Cycle offsets
- Dynamic signal timings

Questions

0-

Contact

Outcomes Delivery, Palestra House, 197 Blackfriars Road London SE1 8NJ Matt Standell MatthewStandell@tfl.gov.uk Chris Blucke ChristopherBlucke@tfl.gov.uk

