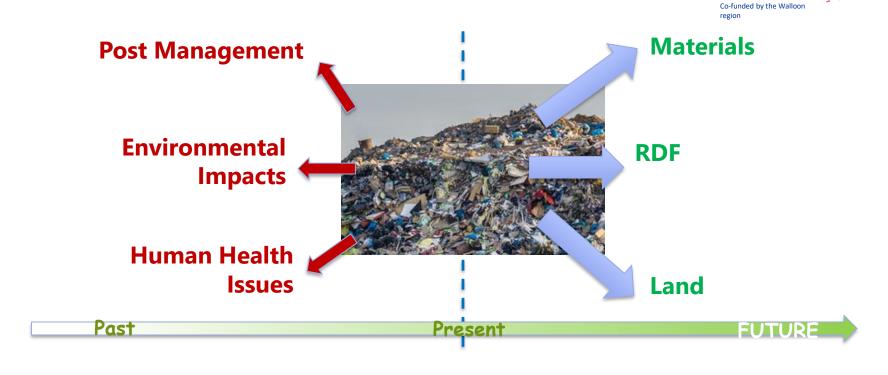
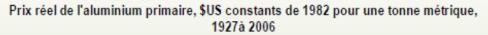


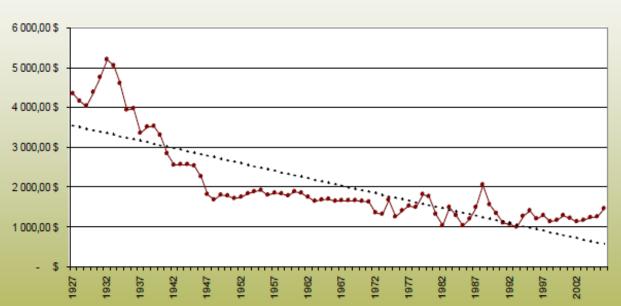
ELIF: Enhanced Landfill Inventory Framework



Ir. Renaud DE RIJDT ATRASOL sprl

CHANGE OF PARADIGM: LANDFILL = SOURCE OF RESOURCES

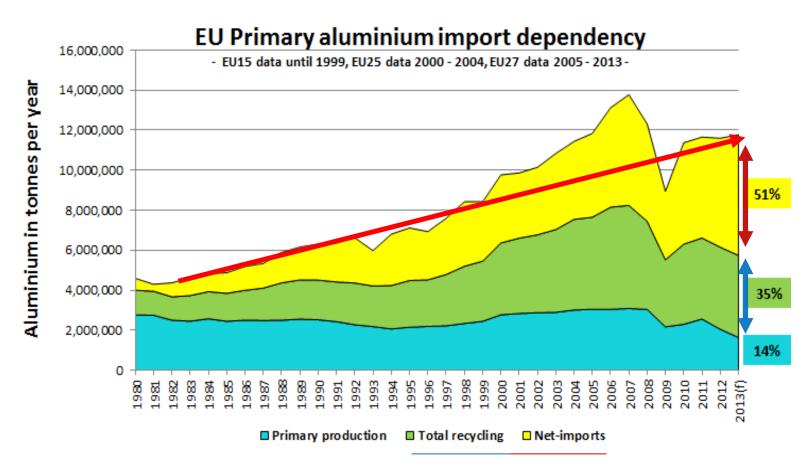

OVERCOMING OBSTACLES



WHY LANDFILL MINING IS NOT YET ON THE MARKET	WHY IT WILL CHANGE
LOW PRICES OF MATERIALS & ENERGY CARRIERS	HIGH PRICES FOR LAND SCARCITY OF SOME METALS & MATERIALS/ENERGY
HIGH COST OF LANDFILL SURVEY IN ORDER TO EVALUATE THE LF RESOURCE POTENTIAL	RAWFILL GEOPHYSICAL IMAGING MULTIMETHODS + GUIDED SAMPLING
DIFFICULTY TO IDENTIFY PROFITABLE PROJECTS	USE OF ELIF USE OF DST
WRITE A COHERENT AND CONVINCING BUSINESS MODEL WHEN LACKING OF INFORMATION	BETTER LEVEL OF INFORMATION MORE RELEVANT INFORMATION (RDM)
WASTE PROCESSING TREATMENT	NEW EQUIPMENTS WITH HIGHER EFFICIENCY WILL DEVELOP TO FOLLOW THE MARKET
LACK OF PUBLIC POLICIES REGARDING LFM	COCOON RAWFILL LT WORKING GROUPS COMMUNICATION RAWFILL
LACK OF INCENTIVES	DEVELOPMENT OF SEPCIFIC LFM INCENTIVES LARGE SCALE DEMONSTRATION PROJECTS
LACK OF SUPPORT FOR CIVIL SOCIETY FOR SOME SITES	ADDED SOCIAL, ECONOMIC & ENVIRONMENTAL VALUE

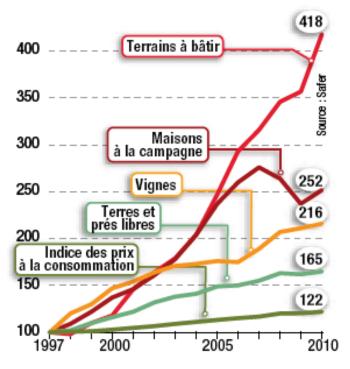
Resources

Sources: US Geological Survey (Prix nominal); US Bureau of Labor Statistics (Indice de prix à la production, Métaux et produits métalliques);


Traitement: CRDT-UQAC

Price and Availability Import Dependency

Metals



Land

Source: Terres d'Europe-Scafr d'après Safer. Eurostat et données nationales.

RAWFILL DEMONSTRATES AT LARGE SCALE:

- 1) HOW TO QUANTIFY RESOURCES POTENTIAL
 - → RAWFILL methodology for historical study & geophysical imaging
- 2) HOW TO DEVELOP ELIF AT EU LEVEL
 - → ELIF Structure with test/demonstration database
- 3) HOW TO CLASSIFY LANDFILLS TO SELECT BEST LFM PROJECTS (on a sustainable perspective) + to give other suitable information for DLM
 - → RAWFILL DST 1 "CEDALION" & DST 2 "ORION"
- 4) INTEREST TO DEVELOP LARGE SCALE PROJECTS
 - LFM Guide, LT Effects Working Group

ELIF: Enhanced landfills inventory framework

A landfill inventory is a list of landfills covering a given geographical zone, with information about each site (mostly environmental)

An Enhanced Inventory is a list of landfills covering a given geographical zone, with information about each site:

- Data allowing to evaluate resources potential
- Data allowing to define a sustainable management method

Past Present FUTURE

IMPORTANCE OF ELIF CONCEPT

- ✓ ELIF is used for describing landfills not only on environmental point of view but with emphasis on available resources, in order to quantify their mining potential
- ✓ ELIF is a prerequisite for DST classification tool and so for
 - allowing feasibility evaluation and setting up business plan/business model for LFM project
 - Guide stakelholders for DLM

ELIF STRUCTURE: 5 SECTIONS

Section	Definition	Fields examples			
0.Generic information	Information about datasheet	Date of creation, updating and			
	creation and maintenance	who is responsible			
1. Landfill ID Card	All administrative information	Name, location, owner, operator,			
	about a given landfill	monitoring, aftercare, legal			
		status, permits			
2. Surroundings	All relevant data about the landfill's	Land planning, territorial			
	surroundings	strategy, current use, specific			
		risks, geology, groundwater,			
		access			
3. Geometry	Landfill geometry, regardless wastes	Surface, volume, depths,			
	information	stability, bottom, capping, biogas			
		network			
4. Wastes	Specific information about the	Types, density, water and gas			
	landfill's waste streams	content, temperature, estimated			
		composition from RDM			

HOW ELIF WAS MADE (1)?

RAWFILL WP T1
Enhanced Landfill Inventory Framework
Deliverable 1.1
Current Inventories Structure Report

December 2017

Prepared by ATRASOL spri

- ✓ Sending questionaires to stakeholders
- ✓ Compilation & deep analysis (field per field) of more than 33 inventories and methological documents
- ✓ First list of fields that can be used for ELIF (69 fields) and can be part of DST

HOW ELIF WAS MADE (2)?

RAWFILL WP T1
Enhanced Landfill Inventory Framework
Deliverable 1.2
Existing LFM initiatives -draft version

December 2017

Prepared by ATRASOL spri

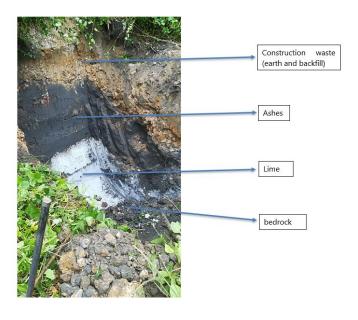
Remark: final version of this document will be published at the end of the RAWFILL project when additional information regarding landfill mining experiences will be available

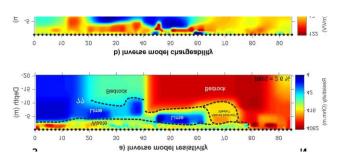
- ✓ Sending questionaires to stakeholders
- ✓ Projects & methods analysis for investigating volume & waste composition (16 projects)
- ✓ **Interesting conclusion**: resource potential is not yet considered as a signifiant incentive compared to environmental & health issues or land price
- ✓ Other conclusion: evaluation of waste quantities (even by geophysical – monomethod – imaging are not precise

HOW ELIF WAS MADE (3)?

RAWFILL WP T1
Enhanced Landfill Inventory Framework
Deliverable 3.1
SWOT Analysis of landfills investigation
methods

June 2018


Prepared by ATRASOL spri



- ✓ Review of all characterization methods: boreholes, trenches, geophysical imaging, sampling & analysis
- ✓ SWOT analysis of these methods on the RAWFILL scope
- ✓ Proposal of an harmonized method for surveying and sampling
- ✓ Proposal of a easy-to-use waste characterization method
- ✓ Value for money of RAWFILL geophysical imaging + guided sampling (Onoz site)

VALUE FOR MONEY OF GEOPHYSICS: ONOZ

- √ Specific case of Onoz
- √ (not to be applied in all cases)
- ✓ Specific Invasive boreholes & trenches: 40 000 €
- ✓ RAWFILL goephysics + guided sampling: 23 000 €
- ✓ Same quality of information, cheaper, faster, more secure...

STANDARD WASTE DESCRIPTION

- Ferrous metals
- Non-ferrous
- Paper & Carboard
- Plastics
- Glass & ceramics
- Inert mineral waste (stone, concrete...)
- Rubber
- Textiles
- Wood
- Organic materials
- Hazardous (ex: batteries)
- Fine matrix

- Water content
- ✓ Consistence
- ✓ Degradation index
- ✓ Temperature
- ✓ Specific odours
- ✓ Colors
- √ Homogeneity
- ✓ Composition (per mesh size)
- ✓ Other (ex: caloric potential)

HOW ELIF WAS MADE (4)?

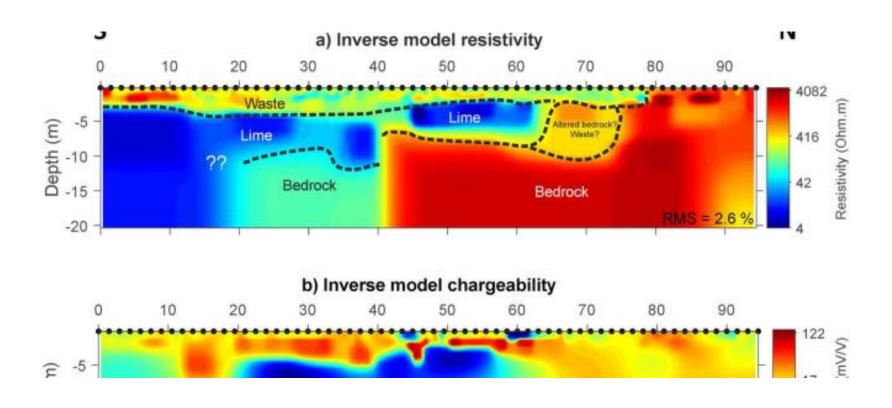
- ✓ From 3 previous deliverables, proposal of ELIF fields:
 - √ 9 generic fields
 - √ 20 ID fields (from 25 at the beginning)
 - √ 13 « surroundings » fields (22 at the beginning)
 - √ 9 geometry fields (from 13)
 - ✓ 12 waste fields(from 9) + 3D 5-layers RDM with 16 parameters

WASTE DESCRIPTION PER LAYERS

Déchets	Hauteur (m)	Volume (m³)	Densité (T/m³)	Poids (T)	Etat physique	% de fines	Type principal	Présence de Gaz	Présence d'eau	(°C)	Nappe d'eau souterraine	Début d'exploitation	Fin d'exploitation	Composition	Potentiel de Recyclabilité
Zone 1															
Zone 2															
Zone 3															
Zone 4															
Zone 5															
Total															

Source d'information et degré de précision

LF 4


(XOK)

H3

V3

LINK with ELIF & GEOPHYSICAL IMAGING

WP T1 to WP T2

- ✓ Suggestions of Indicators for DST-1 « Cedalion »
- ✓ Suggestions of Indicators for DST-2 « Orion »
- ✓ Test database to review pertinence of indicators & weights/classification
- √ Sensitivity analysis of indicators
- ✓ Deadline: June 2019

Raw materials recovered from landfills

The Interreg North-West Europe Project is coordinated by SPAQuE and unites 8 partners from 4 EU regions.

100.000 landfills in North-West Europe

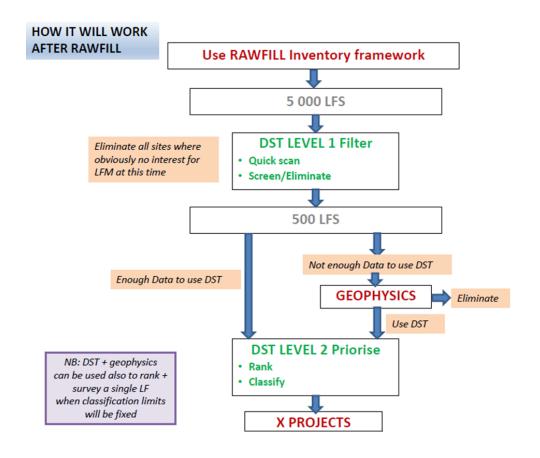
According to EU Landfill Mining Consortium EURELCO the North-West Europe region has ~ 100,000 landfill sites.

100.000 landfills in North-West Europe

Most of these sites lack state-of-the-art environmental protection systems, leading to local pollution, land-use restrictions and global impacts. Fortunately, the large volumes of resources can be recovered through Landfill Mining.

Outcomes of RAWFILL

- an enhanced framework for private/regional/ national/ transregional landfill inventories
- landfill geophysics
- a decision support tool


100.000 landfills in North-West Europe

The main challenge for stakeholders is the profitability risk due to the lack of reliable data on the recovery potential of landfills.

Final results of RAWFILL

Interreg EUROPEAN UNION North-West Europe RAWFILL

European Regional Development Fund

Thank you!