

GenComm Generating Energy Secure Communities

Arya Gunawan, Rory Monaghan

NUI Galway

Valentia, 27th April 2019

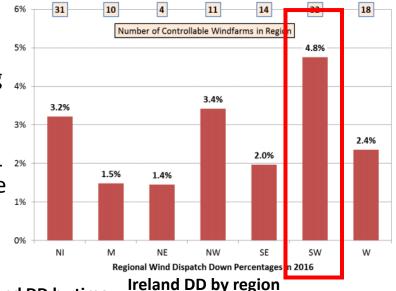
Overview

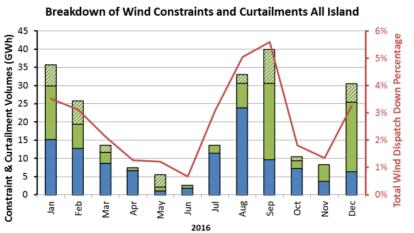
What is GenComm?

What will GenComm deliver?

Valentia Smart H2GO case study

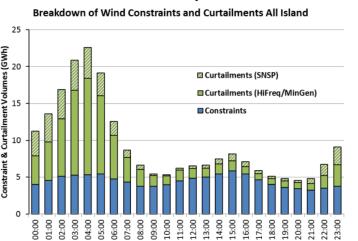
Next steps for community-scale hydrogen





GenComm Reducing Wasted Renewable Energy

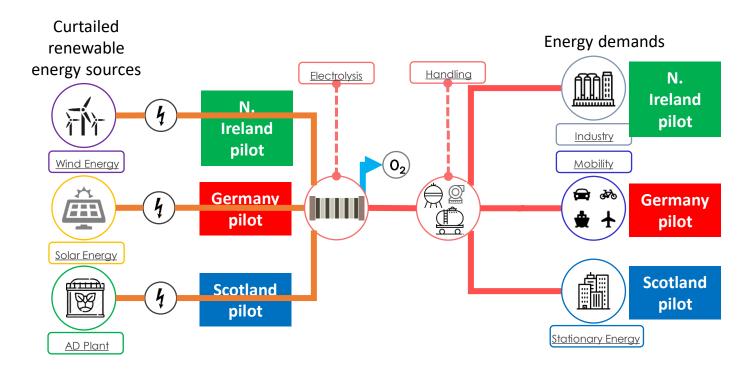
- Generating ENergy secure COMMunities
- €9.3 million project 60% backed by EU Interreg NWE
- 10 partners, 5 countries, 3 pilot plants
- Focused on dispatch down (DD = curtailment + constraint) from grid's inability to support large amounts of variable renewables
- Will increase energy security and resilience in renewable-rich, energy-remote communities



Ireland DD by month

Constraints Curtailments (HiFreq/MinGen) Curtailments (SNSP)

Ireland DD by time



Source: Eirgrid Constraint and Curtailment Report, 2017

2

GenComn Renewable Hydrogen Pilot Plants

GenComm Deliverables Smart H2GO and CH2F

Smart H₂GO **Decision** Support Tool

Can I get in contact with like-minded groups across Europe?

CH2F Community Hydrogen **Forum**

Valentia Smart H2GO Case Study – Objectives

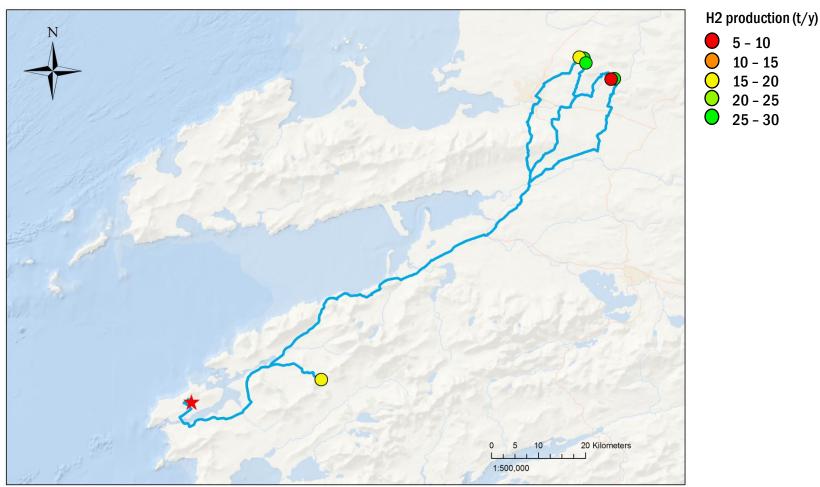
- To assess quantities of hydrogen needed to meet existing fossil fuel heating and transportation fuel demands.
- 2. To assess supply chains for different hydrogen production scenarios:
 - 1. Grid-supplied electrolyser (H₂ generator) on Valentia
 - Electrolysers using curtailed power at existing wind farms in Kerry
 - Electrolyser using (a) curtailed power and (b) all power at hypothetical renewable energy supply (RES) on Valentia

Valentia Smart H2GO Case Study – Energy Demands

Energy demand		Energy use (MWh/year) ^[1]	Assumption (kWh/kg)	Hydrogen demand (tonnes/year)
Heating	Factory	533		16
	Large public building	33		1
	Large private building	156	111/11 - 22 22	5
Trans- portation	Delivery vehicle	69	LHV $H_2 = 33.33$	2
	Buses	30		1
	Marine	58		2
Total		879		26

[1] Valentia Energy master Plan

Valentia Smart H2GO Case Study – Results


Scenario	Description	Electrolyser Size & Location	Levelised Cost of Hydrogen	Comments
1	Grid-supplied electrolyser on Valentia	172 kW on Valentia	€18/kg	Hydrogen only as green as grid electricity. Pay for electricity.
2	Electrolysers using curtailed power at existing wind farms in Kerry	Medium to large electrolysers at wind farms 50-150 km from Valentia (see map)	€22/kg	Green H ₂ , low electrolyser capacity factors mean high costs. Low cost electricity.
3a	Electrolyser using curtailed power at hypothetical Valentia RES	478 kW electrolyser at on Valentia	€20/kg	Green H ₂ , low electrolyser capacity factors mean high costs. Low cost electricity.
3b	3a but using all power	Medium to large electrolyser on Valentia	€5-15/kg	Green H ₂ , higher electrolyser capacity factors mean lower costs. Low cost electricity.

1 kg of H₂ gives 200 km H₂ for buses sells for €12/kg in London

Interreg North-West Europe

Valentia Smart H2GO Case GenComm Study - Scenario 2 Supply Chain

Valentia Smart H2GO Case Study – Conclusions

- Energy demand on Valentia can be supplied by hydrogen, a zero-emission fuel.
- "Grey hydrogen" can be produced on Valentia at €18/kg.
- Green hydrogen can be produced from curtailed power at wind farms 50-150 km away at €22/kg.
- Green hydrogen can be produced at a hypothetical Valentia renewable energy supply at €5-20/kg.

Next Steps for Community-Scale Hydrogen

- Conduct the Valentia Hydrogen Feasibility Study.
- The Community Hydrogen Forum will launch in Q4 2019. Contact <u>rory.monaghan@nuigalway.ie</u> to be kept informed of progress.
- Join Hydrogen Ireland. Ask James Carton about this!
- The online Smart H2GO tool will be launched in Q4 2019.
- For any questions on community-scale hydrogen, contact rory.monaghan@nuigalway.ie.

