

Hydrogen and CCUS – Laboratory Research to Commercial Technology

Venkatesan Venkata Krishnan (VENKAT) Senior Lecturer, Chemical Engineering School of Science, Engineering and Design

Teesside University, Middlesbrough

School of Science, Engineering & Design

tees.ac.uk/science&engineering

Tees Valley Hydrogen Innovation Project – Part Of Building A Hydrogen Economy

- > ERDF part funded with a duration 1/9/18 31/8/21
- ➢ 8 TU staff deployed
- Essentially an R & D project TRL 4-5
- Aim of building, commissioning and trialling a laboratory demonstrator unit based on CMR technology for producing H₂ – typical output 150 g/day
- Medium term aim (post project 2023) of a pilot plant capable of being used as a modular/mobile piece of 'kit'- typical output of 150 Kg/day
- Key project aims:
 - help support the region drive forward a H₂ economy
 - help SMEs develop/build their capability
 - access to demonstrator facility
 - build collaborative networks
 - accelerate innovation
 - seek to improve development and production efficiencies

Collaborative Hydrogen Network – Tees Valley Decarbonisation Agenda

Teesside University

School of Science, Engineering & Design tees.ac.uk/science&engineering

Preliminary Calculations with appropriately sized CMR-SMR

CMR's significant increase in methane conversion beyond equilibrium limit.

> $CH_4 + H_2O \rightarrow CO + 3 H_2$ $CO + H_2O \leftarrow \rightarrow CO_2 + H_2$

Amount of hydrogen recovered in permeate side is plotted against temperature along with methane conversion.

- Potential for lowering the reactor temperature to at least 650° C or less
- Similar Infrastructure (furnaces), Annular-Tubular reactor modifications, at best
- Pd, Pd-Ag sheets/ membranes are expensive, fabrication on industrial scale is a challenge
- Correspondingly lower Heat Duty on Furnace \rightarrow Much Lower CO₂ emissions in flue gases
- CO₂ emissions from Flue Gases could be reduced by about 40% by membrane-assisted lower temperature reforming system

Reactor-separator geometries for SMR w CMR

microns

SINTEF (Norway) – 2 stage Physical Vapor Deposition (PVD)

ECN (Netherlands) – Electroless Deposition of Pd, Pd/Ag

Tecnalia (Spain), AIST (Japan) – 'Pore fill' Pd membrane fabrication of Electroless plating

ENEA (Italy) – Cold-rolling, Diffusion Welding, to produce thin walled Pd-Ag membranes for Hydrogen production

Many Membrane manufacture and deposition Techniques available – we are looking to mix these with catalyst coatings to get a composite reactor-separator bi-phase

School of Science, Engineering & Design

tees.ac.uk/science&engineering

Impact of the Hydrogen Economy (CMRs) on Local SMEs

Reactor Technology Area	Potential SME Contributions/Beneficiary
Furnace Design, Heating – Hydrogen Usage	Potential market development of bespoke and custom made furnaces for H ₂ applications
Membrane manufacture/accessories	Potential for manufacture of specialised membranes for H_2 extraction in CMR-SMR systems and for purification of impure H_2
Fabrication – metal working	Brazing, welding etc.
Software developers, CFD, process simulation	Development of new tools for producers and consumer's. Process modelling, CFD analysis .
Coatings/speciality coatings	Development of new coating technologies for the production of H ₂ related to CMR technology.
Instrumentation and Control	Opportunities for SMEs to adapt and grow into the specific requirements associated with process control.
Precision engineering	Hotbox design, CMR design

Integrating CMR-SMR with CO₂ Capture (Hybrid Membrane-Amine

Ref:

Teesside University

P.K. Kundu et al. / International Journal of Greenhouse Gas Control 28 (2014) 248–256;

Hydrogen Impacting Initiatives

TVCA successful bid into OLEV for 2 hydrogen refuelling stations (HRS) – additional district heating schemes/energy networks.

H21 Leeds City Gate – implications/benefits for Tees Valley → markets for Hydrogen <u>https://www.northerngasnetworks.co.uk/event/h21-launches-national/</u>

Potential New Markets – Hydrogen into the UK train network – [10 regional trains = 3 tonnes H_2/day]

Industrial thinking/developments

Japan has identified hydrogen as the answer to the energy problem, both for transportation and in power generation (extract from The Chemical Engineer 1/4/2019).

Carbon Utilization

School of Science, Engineering & Design

tees.ac.uk/science&engineering

INVESTORS

<u>Steam electrolysis/ CO₂-steam co-electrolysis</u> – Steam electrolysis for production of Hydrogen or CO₂-steam electrolysis for co-production of CO, and Hydrogen, at high temperature offers lower electrical consumption compared to low temperature water electrolysis.

 H_2O (steam) + CO_2 + electricity \rightarrow H_2 + CO + O_2

In the event of available heat sources, viz. waste heat from industry or from nuclear reactors, geothermal sources etc., and high temperature co-electrolysis is a great opportunity to convert CO_2 to CO/H_2 , which is a crucial feedstock for a variety of chemicals/ fuels.

Teesside University CO₂ Utilization via HT Co-Electrolysis (HTCE), cont'd - Cerametec

From Cerametec (Utah)

10 cm x 10 cm laboratory unit

CO₂ utilization via Hydrogenation

Generating chemicals/ fuels, e.g. (Figure 1). The heart of the process lies in the catalysis of CO_2 Hydrogenation towards any of the pathways shown below. This also fits in well with the usage of renewable energy to produce Hydrogen, viz. electrolysis, it generates additional market for Hydrogen, and decarbonizes the environment.

SUMMARY – H₂, CCUS

Hydrogen Production, Via

CMR-SMR (High Efficiency, Low T, Low Carbon emissions

Hydrogen Production		CO ₂ Capture	
Via		Via Advanced Amine Absorption (with Membrane	
Electrolysis (PEMECs, SOECs)		usage)	
CO ₂ Utilization, with Steam	CO ₂	Utilization with Hydrogen (Hydrogenation	
Via	Via		
High Temp Co-electrolysis (HTCEs)	Het	Heterogeneous Catalysis – Reverse WGS and FT	

Targeting Sustainable Jet Fuel (Aviation Turbine Fuel)

