

Potential for increasing phosphorus recovery from sewage sludge by Bio-Acidification

Marie-Line DAUMER, Younes BAREHA, Mohamed Saoudi

Liège, 7-8 October 2019

Due to different P removal technologies, chemistry of P in sludge is complex

Concl. & Perspectives

P recycling processes require soluble P → Increasing P recycling rate presupposes to dissolve more P

The biological process is it efficient for dissolving P in all types of sewage sludge?

A test to assess the P dissolution potential in sludge

BPDP test (Braak et al., Environmental Technology, 2015)

- □ Co-product = White sugar (0,5gCOD/gVS)
- 48 hours
- Anaerobic conditions (N2 flushing)
- □ 38°C
- Same mixing in all the bottles

20 sludge from 10 WasteWater Treatement Plant (WWTP), 5 P removal technologies, 10 000 – 620 000 p.e.

- EBPR-B
- □ Chemical with Iron salts C(Fe)
- Chemical with Aluminium salts C(Al)
- EBPR + Iron BC(Fe)
- EBPR + Aluminium -BC(Fe+Al)

6

The « Enigmatic » metal composition of some sludge

- > S3-Iron brought by sludge from a drinkable water plant?
- Same WWTP same day but S4A: activated sludge,S4B: MBR
- S9-Iron brought by sludge from a drinkable water plant?

7

High variability of P content in sludge (1.3 to 4,3%)

- Less P content in sludge from EBPR (S1). To be confirmed
 - High variability when metal salts are used
 - Lowest value for S3 which doesn't control the input (high Fe and Ca content)

Up to 75% of P dissolved by the bio-acidification

- > 50-70% EBPR and EBPR + Fe
- More variability with EBPR+(Fe)+Al
- > >70% if chemical P removal with Fe (controlled)
- Not suitable for chemical P removal with AI (to be confirmed)

Up to 80% of Fe dissolved by the bio-acidification (Patent 17 50608)

Concl. & Perspectives

- 60-80% EBPR + Fe
- More variability with EBPR+(Fe)+Al and C(Fe) even if Iron is controlled (S4A: activated sludge, S4B: MBR)

> 40% of Iron dissolved with chemical Al P removal(to be confirmed)

No clear effect of pH neither m/P ratio

- Only very high level of m/P (not controlled)seems to inhibit the dissolution
- ➤ The effect of pH is depending on sludge → forms of FeP

Results

- Up to 75% of the total P can be dissolved by bio-acidification
- The efficiency is good for EBPR and EBPR + Fe sludge
- More variability for the other P removal process
- Up to 80% of the total Fe can be dissolved by bio-acidification
- No clear effect of m/P ratio or pH

CONTEXT

- Probably several forms of FeP in sludge which have to be known to better understand and improve the bio-acidification
 - Fe recovery is possible but is it possible to recycle it?
 - **Methodology to characterize FeP forms in sludge?**

What is the impact of the dephosphatation management on the forms of FeP and their solubility during bio-acidification?

Thank you for your attention

To learn more about forms of FeP in sludge just wait the next issue.....

For more information:

Poster Younes Bareha n°18 (optimization of the bio-acidification) marie-line.daumer@irstea.fr

