Understand Phosphorus dissolution in sewage sludge by Bio-acidification.

Mohamed Amine Saoudi, Karel As, Marie-Line Daumer, IRSTEA France
5th European Conference on Sludge Management ECSM 2019
Liege, 08,10,2019

Content

- Overview of P removal and Recovery
 - P recovery by bioacidification
- Some 1.01 P removal in WWTP
- Objectives
- Materials and methods
- Results
- Conclusion

Overview of P removal and Recovery

P removal from WWTP

Biological P removal (EBPR)

Overview of P removal and Recovery

P recovery by bioacidification

P removal from WWTP

Chemical P removal (CPR) and CPR +EBPR

P removal from WWTP using Iron slats

Most used iron salt: Ferric-slats (FeCl₃) and Ferrous-Salts (FeSO₄)

What are the mechanisms of P removal by iron salts?

• P-Adsorption on iron oxide (hydroxide or oxyhydroxide)

$$Fe^{3+} + 3 OH^{-} \longrightarrow Fe(OH)_{3} \underset{Dissolved P}{\longrightarrow} Fe(OH)_{3} \sim P$$

Wilfert et al. 2015

P removal from WWTP using Iron slats

What are the mechanisms of P removal by iron salts?

Iron-Phosphate precipitation

P removal from WWTP using Iron slats

Is there an effects of the Iron Salts nature / dosing location in Fe-CPR ?

Wastewater origin	Fe:P molar ratio	Iron salts type	Number and location of salts dosing	Influent P concentration (mg/I)	residual P (mg/l)	P removal (%)	reference	
	0.89		2 biol	nd	1.00	80	Strickland, 1998	
Letchworth	1.11	Ferric		nd	0.51	93		
	1.61	Sulphate		nd	0.36	96		
Sheboygan	0.89	Ferric Chloride	2 clarifier	6.38	0.90	85	EPA, 1987	
	0.72	Ferrous Sulphate		nd	2.30	63	Strickland,	
Letchworth	1.28		2 biol	nd	0.72	86		
	1.56			nd	0.62	93	1998	
Appleton	0.89		Plant influent	10.45	0.80	92		
Port Clinton	1.09	Ferrous	2 biol	5.2	0.50	90	EPA, 1987	
Port Washington	0.8	Chloride	1 clarifier	5.9	1.00	83	,	

P removal from WWTP using Iron slats

 No effect of iron salts' nature (ferric or ferrous) was reported for P removal efficiency (when properly managed)

Wu et al, 2015 in MBR system and synthetic WW

Objectives

Answer two questions:

- In which forms P and Fe are present in a selected/specific sewage sludge ?
- Which solid P and Fe forms are dissolving after bioacidification?

Three ways could be used:

- Direct analysis of the sludge (XRD, XANES, Mössbauer-spectroscopy, ...)
- Sequential Extraction
- Modeling (High-level modeling!!!)

Materials and methods

The sequential Extraction method (based on the SEDEX method (Ruttenberg, 1992) and Gu et al 2015)

Step	Extractant	T (°C)	рН	Time (h)	V (ml)	P- fraction	Fe fraction	Reference
1	Centrifugation	We can distinguish the Fe(II) compounds from the Fe(III) compounds		Dissolved P	Dissolved Fe	-		
2	1M MgCl ₂			Exchangeable P (Labil, loosely adsorbed)	Exchangeable Fe	SEDEX: Ruttenber g, 1992		
3	0.5 wt % 2,2 `-bipyridine + 0.1 M KCl			Fe(II)-P bound (Vivianite-Like)	Fe(II) compounds (Vivianite)	Gu et al.		
4	0.1 M NaOH			P-adsorbed to metal hydroxides	-	SMT/SEDE X		
5	1M HCl			Ca-P and acid sensitive minerals	Most Iron (hydr)oxides	SMT/SEDE X		
6	Total mineralization					Organic and Refractory	Refractory Fe	-

Materials and methods

Sludge origin and Characteristics

Characteristics	WWTP 1*	WWTP 2*
Sludge type	Thickened	Thickened
Total Solids(TS) (g/kg sludge)	49	42
Mineral matter content (MM) (g/kg sludge)	14	9
Volatile Solids(VS) (g/kg sludge)	35	33
pН	6.7	6.1
Alkalinity (g HCO ₃ /kgw)	10.1	9.8
Total concentrations of chemical species	•	
P(mM)	49	37
Fe (mM)	22	21
Al(mM)	16	7
Ca (mM)	22	12
Mg(mM)	13	9

* Both WWTP1 and WWTP2 use biological P removal combined with Fe₃Cl precipitation

Results

Bioacidification conditions:

- Co-substrate concentration: 0,5gCOD.gVS⁻¹
- Incubation at 38°C under anaerobic conditions for 24h

WWTP	Raw sludge			Afi				
	pH initial	[P] initial	[Fe] initial	pH _{final}	[P] _{final}	[Fe] _{final}	% of	% of
		(mM)	(mM)		(mM)	(mM)	P_{diss}	Fe _{diss}
1	6.7	3.3	0.1	4.1	23.6	12.4	48	57
2	6.1	10.1	0.1	3.9	20.0	14.7	53	70

Results

Sequential Extraction before Bioacidification:

Results

• Sequential Extraction After Bioacidification:

Conclusion

- It's not just an Acidification.
 - Several mechanisms are responsible of the P dissolution (Iron reduction, pH, ions exchange, desorption,...)
- Source control:
 - P removal configuration has a significant impact on the sludge quality regarding bioacidification efficiency.
- Simple characterisation (Fe/P ratio, TS,) is not enough to evaluate sludge quality,
- Sequential extraction with Fe(II) extraction step could help
 better understand the Fe-P interactions in sludge.

Perspectives

- Evaluate several sludge from multiple WWTP with different treatment configurations (In progress)
- Replace NaOH extraction with a reduction agent to differentiate
 P-Ca and P-Fe(III) precipitate,
- Sludge characterization with direct methods such as XRD
- Optimization of bioacidification by ethier:

Thank you for your attention

