

Managing Curtailment in 2030 Paul Blount & Rory Mullan October 2019

- 1. Project Team and Scope
- 2. What is Curtailment
- 3. Historical Curtailment
- 4. Policy Context
- 5. Demand Forecasting
- 6. Adding Wind to reach High RES-E %
- 7. Adding Solar to reach High RES-E%
- 8. Introduction to Curtailment Mitigation Measures up to 2030
- 9. SNSP and Min Gen Improvements on 70% RES-E System
- 10. The Impact of Additional Interconnector and Storage Capacity on 70% RES-E System
- 11. Demand Side Management Improvements on 70% RES-E System
- 12. The Impact of Improved Wind Capacity Factor on 70% RES-E System
- 13. Proposals for High RES-E at Low Curtailment Levels in 2030
- 14. Recommendations

Project Team

Paul Blount

Company/Institution: Coillte Job Title: Portfolio Director Project Role: Model Development & Analysis Background: Civil Engineer with 10 year's experience in renewables.

Rory Mullan

Company/Institution: Mullan Grid Job Title: Senior Consultant Project Role: Project Lead Background: Consultant on grid connections to the renewable industry for the past 12 years and worked for Irish Utilities

Peter Lynn

Company/Institution: Mullan Grid

Job Title: Senior Engineer

Project Role: Project Support

Background: Chartered Engineer with 18 years experience in the Irish engineering consultancy sector and has spent the past 10 years specialising in grid connections for renewable generation in Ireland and Northern Ireland.

Dr James Carton

Company/Institution: DCU Job Title: Assistant Professor Project Role: Project Support Background: Co-leader of The Climate Change Task Force, and member of Future Energy Leaders programme of the World Energy Council.

Conor Forde

Company/Institution: Mullan Grid Job Title: Project Engineer Project Role: Project Support Background: Recent DCU graduate in Mechanical Engineering, currently undertaking a research masters on hydrogen storage in DCU.

Project Objectives

Examine the electricity system in Ireland and seek to determine the relative and combined impact and importance of a series of curtailment mitigation measures to facilitate high levels of RES-E

Project Aims and Objectives:

- Develop, calibrate and test a model for estimating curtailment in Ireland.
- Investigate potential measures to mitigate curtailment in 2030.
- Develop scenario of a high RES-E in 2030 with relatively low curtailment.
- Animation of 2030 curtailment results.
- Dissemination and Project report for policy makers and stakeholders.
- Note Analysis has not considered grid limitations at transmission and distribution level - Assuming curtailment allocated on a pro-rata basis across wind and solar

- 1. Project Team and Scope
- 2. What is Curtailment
- 3. Historical Curtailment
- 4. Policy Context
- 5. Demand Forecasting
- 6. Adding Wind to reach High RES-E %
- 7. Adding Solar to reach High RES-E%
- 8. Introduction to Curtailment Mitigation Measures up to 2030
- 9. SNSP and Min Gen Improvements on 70% RES-E System
- 10. The Impact of Additional Interconnector and Storage Capacity on 70% RES-E System
- 11. Demand Side Management Improvements on 70% RES-E System
- 12. The Impact of Improved Wind Capacity Factor on 70% RES-E System
- 13. Proposals for High RES-E at Low Curtailment Levels in 2030
- 14. Recommendations

What is SNSP ?

- EirGrid's plan to manage curtailment Delivering a Secure, Sustainable Electricity System (DS3)
- System Non-Synchronous Penetration (SNSP) limit:

SNSP = Non-Synchronous Generation + Import Demand + Export

• Aim of DS3 for 2020 is to increase SNSP from 50% to 75%

- 1. Project Team and Scope
- 2. What is Curtailment
- 3. Historical Curtailment
- 4. Policy Context
- 5. Demand Forecasting
- 6. Adding Wind to reach High RES-E %
- 7. Adding Solar to reach High RES-E%
- 8. Introduction to Curtailment Mitigation Measures up to 2030
- 9. SNSP and Min Gen Improvements on 70% RES-E System
- 10. The Impact of Additional Interconnector and Storage Capacity on 70% RES-E System
- 11. Demand Side Management Improvements on 70% RES-E System
- 12. The Impact of Improved Wind Capacity Factor on 70% RES-E System
- 13. Proposals for High RES-E at Low Curtailment Levels in 2030
- 14. Recommendations

Historical Wind Curtailment

Source: Curtailment data from EirGrid & SONI's Annual Renewable Energy Constraint and Curtailment Reports, and Wind Farm Dispatch Down Reports.

- 1. Project Team and Scope
- 2. What is Curtailment
- 3. Historical Curtailment
- 4. Policy Context
- 5. Demand Forecasting
- 6. Adding Wind to reach High RES-E %
- 7. Adding Solar to reach High RES-E%
- 8. Introduction to Curtailment Mitigation Measures up to 2030
- 9. SNSP and Min Gen Improvements on 70% RES-E System
- 10. The Impact of Additional Interconnector and Storage Capacity on 70% RES-E System
- 11. Demand Side Management Improvements on 70% RES-E System
- 12. The Impact of Improved Wind Capacity Factor on 70% RES-E System
- 13. Proposals for High RES-E at Low Curtailment Levels in 2030
- 14. Recommendations

Policy Context

Renewable Energy Directive 2009/28/EC

• Directive with 2020 RES-E targets and mandating priority dispatch of renewables.

Clean Energy Package for All Europeans

- EU target of at least 32% in renewable energy by 2030.
- Progress report on National Energy Climate Plans (NECPs) to be provided on a biennial basis.

Climate Action Plan 2019

• New 70% RES-E 2030 target for 2030.

DS3 Programme

• EirGrid's programme to minimise curtailment up until 2020.

EU-SysFlex

EirGrid led project to investigate challenges of high RES-E systems. This is the groundwork for DS30.

- 1. Project Team and Scope
- 2. What is Curtailment
- 3. Historical Curtailment
- 4. Policy Context
- 5. Demand Forecasting
- 6. Adding Wind to reach High RES-E %
- 7. Adding Solar to reach High RES-E%
- 8. Introduction to Curtailment Mitigation Measures up to 2030
- 9. SNSP and Min Gen Improvements on 70% RES-E System
- 10. The Impact of Additional Interconnector and Storage Capacity on 70% RES-E System
- 11. Demand Side Management Improvements on 70% RES-E System
- 12. The Impact of Improved Wind Capacity Factor on 70% RES-E System
- 13. Proposals for High RES-E at Low Curtailment Levels in 2030
- 14. Recommendations

Demand growth

Source: Demand between 2018 and 2029 sourced from EirGrid's median demand forecasts from the 2018 Generation Capacity Statement * Electric vehicle and heat pump assumptions from IWEA 70 by 30 Study

All Island 2030 Demand

Demand Component	ROI (MWh)	NI (MWh)	All Island (MWh)
Background Demand	29,532,561	9,696,431	39,228,992
Data Centres	11,151,480	-	11,151,480
Electric Vehicles	1,186,804	566,699	1,753,503
Heat Pumps	1,199,975	504,514	1,704,489
Total Demand	43,070,820	10,767,644	53,838,464

- 1. Project Team and Scope
- 2. What is Curtailment
- 3. Historical Curtailment
- 4. Policy Context
- 5. Demand Forecasting
- 6. Adding Wind to reach High RES-E %
- 7. Adding Solar to reach High RES-E%
- 8. Introduction to Curtailment Mitigation Measures up to 2030
- 9. SNSP and Min Gen Improvements on 70% RES-E System
- 10. The Impact of Additional Interconnector and Storage Capacity on 70% RES-E System
- 11. Demand Side Management Improvements on 70% RES-E System
- 12. The Impact of Improved Wind Capacity Factor on 70% RES-E System
- 13. Proposals for High RES-E at Low Curtailment Levels in 2030
- 14. Recommendations

Adding Wind to reach high RES-E %

Adding Wind to reach high RES-E %

Adding Wind to reach high RES-E

- 1. Project Team and Scope
- 2. What is Curtailment
- 3. Historical Curtailment
- 4. Policy Context
- 5. Demand Forecasting
- 6. Adding Wind to reach High RES-E %
- 7. Adding Solar to reach High RES-E%
- 8. Introduction to Curtailment Mitigation Measures up to 2030
- 9. SNSP and Min Gen Improvements on 70% RES-E System
- 10. The Impact of Additional Interconnector and Storage Capacity on 70% RES-E System
- 11. Demand Side Management Improvements on 70% RES-E System
- 12. The Impact of Improved Wind Capacity Factor on 70% RES-E System
- 13. Proposals for High RES-E at Low Curtailment Levels in 2030
- 14. Recommendations

- 1. Project Team and Scope
- 2. What is Curtailment
- 3. Historical Curtailment
- 4. Policy Context
- 5. Demand Forecasting
- 6. Adding Wind to reach High RES-E %
- 7. Adding Solar to reach High RES-E%
- 8. Introduction to Curtailment Mitigation Measures up to 2030
- 9. SNSP and Min Gen Improvements on 70% RES-E System
- 10. The Impact of Additional Interconnector and Storage Capacity on 70% RES-E System
- 11. Demand Side Management Improvements on 70% RES-E System
- 12. The Impact of Improved Wind Capacity Factor on 70% RES-E System
- 13. Proposals for High RES-E at Low Curtailment Levels in 2030
- 14. Recommendations

Investigation of Curtailment Mitigation Measures

Measure	Description	
Poliovo oporational constraints	-Min Gen	1400 MW – 0 MW
	-SNSP	75% - 100%
Additional interconnection capacity	-Celtic IC -Greenlink IC -Additional capacity	Up to 3000 MW
Additional Energy storage capacity	-3hr Batteries -6hr, 15hr, 30 hr PHES	Up to 3000 MW
Increased wind capacity factor	-Blended Onshore & Offshore Fleet Cap Factor	30% - 50%
Diversification of technologies	-Increase Solar Capacity	300 MW Up to 14,000 MW
Demand side Management	-% EV Demand Flexible -% Background Demand Flexible -% Heat Pump Demand Flexible	0% - 100%

- 1. Project Team and Scope
- 2. What is Curtailment
- 3. Historical Curtailment
- 4. Policy Context
- 5. Demand Forecasting
- 6. Adding Wind to reach High RES-E %
- 7. Adding Solar to reach High RES-E%
- 8. Introduction to Curtailment Mitigation Measures up to 2030
- 9. SNSP and Min Gen Improvements on 70% RES-E System
- 10. The Impact of Additional Interconnector and Storage Capacity on 70% RES-E System
- 11. Demand Side Management Improvements on 70% RES-E System
- 12. The Impact of Improved Wind Capacity Factor on 70% RES-E System
- 13. Proposals for High RES-E at Low Curtailment Levels in 2030
- 14. Recommendations

- 1. Project Team and Scope
- 2. What is Curtailment
- 3. Historical Curtailment
- 4. Policy Context
- 5. Demand Forecasting
- 6. Adding Wind to reach High RES-E %
- 7. Adding Solar to reach High RES-E%
- 8. Introduction to Curtailment Mitigation Measures up to 2030
- 9. SNSP and Min Gen Improvements on 70% RES-E System
- 10. The Impact of Additional Interconnector and Storage Capacity on 70% RES-E System
- 11. Demand Side Management Improvements on 70% RES-E System
- 12. The Impact of Improved Wind Capacity Factor on 70% RES-E System
- 13. Proposals for High RES-E at Low Curtailment Levels in 2030
- 14. Recommendations

The Impact of additional interconnector and storage Capacity on 70% RES-E System

All Island Wind Curtailment Vs Additional Idealised Interconnection and Storage

Benefits of Battery Storage

- Provision of DS3 System Services
- Ramping
- Security of Supply
- Deferring Network Investment
- Maximising Auto-Production
- Energy Arbitrage

- 1. Project Team and Scope
- 2. What is Curtailment
- 3. Historical Curtailment
- 4. Policy Context
- 5. Demand Forecasting
- 6. Adding Wind to reach High RES-E %
- 7. Adding Solar to reach High RES-E%
- 8. Introduction to Curtailment Mitigation Measures up to 2030
- 9. SNSP and Min Gen Improvements on 70% RES-E System
- 10. The Impact of Additional Interconnector and Storage Capacity on 70% RES-E System
- 11. Demand Side Management Improvements on 70% RES-E System
- 12. The Impact of Improved Wind Capacity Factor on 70% RES-E System
- 13. Proposals for High RES-E at Low Curtailment Levels in 2030
- 14. Recommendations

Demand Side Management Improvements on 70% RES-E System

- 1. Project Team and Scope
- 2. What is Curtailment
- 3. Historical Curtailment
- 4. Policy Context
- 5. Demand Forecasting
- 6. Adding Wind to reach High RES-E %
- 7. Adding Solar to reach High RES-E%
- 8. Introduction to Curtailment Mitigation Measures up to 2030
- 9. SNSP and Min Gen Improvements on 70% RES-E System
- 10. The Impact of Additional Interconnector and Storage Capacity on 70% RES-E System
- 11. Demand Side Management Improvements on 70% RES-E System
- 12. The Impact of Improved Wind Capacity Factor on 70% RES-E System
- 13. Proposals for High RES-E at Low Curtailment Levels in 2030
- 14. Recommendations

The Impact of Improved Wind capacity factor on 70% RES-E System

Evolution of wind turbine heights and output

32 September 19, 2017

Bloomberg New Energy Finance

The Impact of Improved Wind capacity factor on 70% RES-E System

Total Wind Curtailment vs All Island Wind Capacity Factor

- 1. Project Team and Scope
- 2. What is Curtailment
- 3. Historical Curtailment
- 4. Policy Context
- 5. Demand Forecasting
- 6. Adding Wind to reach High RES-E %
- 7. Adding Solar to reach High RES-E%
- 8. Introduction to Curtailment Mitigation Measures up to 2030
- 9. SNSP and Min Gen Improvements on 70% RES-E System
- 10. The Impact of Additional Interconnector and Storage Capacity on 70% RES-E System
- 11. Demand Side Management Improvements on 70% RES-E System
- 12. The Impact of Improved Wind Capacity Factor on 70% RES-E System
- 13. Proposals for High RES-E at Low Curtailment Levels in 2030
- 14. Recommendations

Proposed Measures: 2030 High RES-E System

Measure	Description	2030
Poliovo oporational constraints	-Min Gen	700 MW
Relieve operational constraints	-SNSP	90%
Interconnection*	-Celtic IC -Greenlink IC -EWIC -MOYLE -Additional Capacity	700 MW 500 MW 500 MW 80 MW <u>240 MW</u> 2020 MW
Energy storage	-Turlough Hill	219 MW
Increased wind capacity factor	-Blended Onshore & Offshore Fleet Capacity Factor	38%
Diversification of technologies	-Solar Capacity	7000 MW
Demand side Management	-% EV Demand Flexible -% Background Demand Flexible -% Heat Pump Demand Flexible	60% 15% 100%

* Interconnector Availability Assumed to be 90%

Low Curtailment Proposals for High RES-E in 2030

Curtailment Mitigation Measures

- 1. Relieve Operational Constraints
- 2. Provide Additional IC Capacity
- 3. Increase the Capacity Factor of the wind fleet
- 4. Add Solar to the Generation Mix
- 5. Utilise Background Demand & EV Demand Side Flexibility
- 6. Utilise Heat Pump Demand Side Flexibility

5

- 1. Relieve Operational Constraints
- 2. Provide Additional IC Capacity
- 3. Increase the Capacity Factor of the wind fleet
- 4. Add Solar to the Generation Mix
- 5. Utilise Background Demand & EV Demand Side Flexibility
- 6. Utilise Heat Pump Demand Side Flexibility

- 1. Relieve Operational Constraints
- 2. Provide Additional IC Capacity
- 3. Increase the Capacity Factor of the wind fleet
- 4. Add Solar to the Generation Mix
- 5. Utilise Background Demand & EV Demand Side Flexibility
- 6. Utilise Heat Pump Demand Side Flexibility

- 1. Relieve Operational Constraints
- 2. Provide Additional IC Capacity
- 3. Increase the Capacity Factor of the wind fleet
- 4. Add Solar to the Generation Mix
- 5. Utilise Background Demand & EV Demand Side Flexibility
- 6. Utilise Heat Pump Demand Side Flexibility

Curtailment %

- 1. Relieve Operational Constraints
- 2. Provide Additional IC Capacity
- 3. Increase the Capacity Factor of the wind fleet
- 4. Add Solar to the Generation Mix
- 5. Utilise Background Demand & EV Demand Side Flexibility
- 6. Utilise Heat Pump Demand Side Flexibility

Curtailment Mitigation Measures

- 1. Relieve Operational Constraints
- 2. Provide Additional IC Capacity
- 3. Increase the Capacity Factor of the wind fleet
- 4. Add Solar to the Generation Mix
- 5. Utilise Background Demand & EV Demand Side Flexibility
- 6. Utilise Heat Pump Demand Side Flexibility

Curtailment %

Curtailment Mitigation Measures

- 1. Relieve Operational Constraints
- 2. Provide Additional IC Capacity
- 3. Increase the Capacity Factor of the wind fleet
- 4. Add Solar to the Generation Mix
- 5. Utilise Background Demand & EV Demand Side Flexibility
- 6. Utilise Heat Pump Demand Side Flexibility

Curtailment %

- 1. Relieve Operational Constraints
- 2. Provide Additional IC Capacity
- 3. Increase the Capacity Factor of the wind fleet
- 4. Add Solar to the Generation Mix
- 5. Utilise Background Demand & EV Demand Side Flexibility
- 6. Utilise Heat Pump Demand Side Flexibility

- 1. Relieve Operational Constraints
- 2. Provide Additional IC Capacity
- 3. Increase the Capacity Factor of the wind fleet
- 4. Add Solar to the Generation Mix
- 5. Utilise Background Demand & EV Demand Side Flexibility
- 6. Utilise Heat Pump Demand Side Flexibility

- 1. Relieve Operational Constraints
- 2. Provide Additional IC Capacity
- 3. Increase the Capacity Factor of the wind fleet
- 4. Add Solar to the Generation Mix
- 5. Utilise Background Demand & EV Demand Side Flexibility
- 6. Utilise Heat Pump Demand Side Flexibility

- 1. Relieve Operational Constraints
- 2. Provide Additional IC Capacity
- 3. Increase the Capacity Factor of the wind fleet
- 4. Add Solar to the Generation Mix
- 5. Utilise Background Demand & EV Demand Side Flexibility
- 6. Utilise Heat Pump Demand Side Flexibility

Curtailment Mitigation Measures

- 1. Relieve Operational Constraints
- 2. Provide Additional IC Capacity
- 3. Increase the Capacity Factor of the wind fleet
- 4. Add Solar to the Generation Mix
- 5. Utilise Background Demand & EV Demand Side Flexibility
- 6. Utilise Heat Pump Demand Side Flexibility

Curtailment %

- 1. Relieve Operational Constraints
- 2. Provide Additional IC Capacity
- 3. Increase the Capacity Factor of the wind fleet
- 4. Add Solar to the Generation Mix
- 5. Utilise Background Demand & EV Demand Side Flexibility
- 6. Utilise Heat Pump Demand Side Flexibility

- 1. Project Team and Scope
- 2. What is Curtailment
- 3. Historical Curtailment
- 4. Policy Context
- 5. Demand Forecasting
- 6. Adding Wind to reach High RES-E %
- 7. Adding Solar to reach High RES-E%
- 8. Introduction to Curtailment Mitigation Measures up to 2030
- 9. SNSP and Min Gen Improvements on 70% RES-E System
- 10. The Impact of Additional Interconnector and Storage Capacity on 70% RES-E System
- 11. Demand Side Management Improvements on 70% RES-E System
- 12. The Impact of Improved Wind Capacity Factor on 70% RES-E System
- 13. Proposals for High RES-E at Low Curtailment Levels in 2030

14. Recommendations

Recommendations

- EirGrid implement DS30 to relieve operational constraints.
- Review impact of clean energy package rules
- Build new interconnectors.
- Examine market design for high RES-E.
- Consider policies to incentivise higher wind capacity factors (onshore & offshore).
- Incorporate solar to optimise high RES-E.
- Review benefit of storage and DSM for capacity and system services.
- Moving from "can we" to "how do we" get to 70% Lots more studies required!

