

Quality control of fresh agro products with gas sensing technologies

QCAP

Frans J.M. Harren

Need for gas sensing

Environmental

Fresh fruit storage

Purity gases

Breath analysis

Transport products

Combustion

Green houses

Research examples

Trace gas experiments in the part per billion range (1:109 molecules) using state-of-the art laser-based detectors, allowing on-line experiments, under dynamical changing conditions

Need for gas sensing

Environmental

Fresh fruit storage

Purity gases

Breath analysis

Transport products

Combustion

Green houses

Main Goal/ Focus

An prototype for an interactive storage system

- validated in real life, commercial conditions
- for apples, blueberries, potatoes and pears
- able to reduce storage losses by 50%

Anticipation ightharpoonup Actions to avoid food wastage

Motivation

Apple/pear/blueberry

- Stored at low O_2 (0-1%)

high CO_2 level (1-5-25%)

- Wrong levels damages product
- Besides rotting, sprouting, fungi, etc.

North-West Europe estimated production:

apple 3.4 M tons

- pear 0.9 M tons

blueberry 18.000 tons

potato28 M tons

Estimated loss: 3-5%;

QCAP aims to reduce losses equivalent to a value of 60.000 Euro/farmer per year

Fungal and bacterial rots in potato

Helminthosporiumsolani

Petobateium atrosedicum

Q. CATO TO VOTUTO Cranfield Environment and Agrifood

Nowadays, indicators for the best apple quality

- Minimum decrease of firmness
- Preventing internal and external defects
- Maintain good color of background/blush
- Long shelf life with good quality
- Perfect taste

Done with:

• Control temperature, O2, CO2, humidity, ethylene, ethanol

Overview Controlled Atmosphere storage room

Storage capacity 125.000 Tons (24 rooms)

Concept QCAP

Sensitive multi-species <u>trace</u> gas sensor.

Trace gases represent ripening, fermentation, damage and rotting

The <u>sensor will give an early</u> warning to growers and <u>retailers</u>,

Thereby avoiding undesirable quality loss/downgrading of stored produce.

The alcohol breath test for driving

The ethanol test for storage

Gas sensing via infrared absorption spectroscopy

For fruit storage: selectivity/sensitivity

Sensitivity

Species	Concentration in storage room	Required accuracy
Ethanol	1-100 ppbv	10 -100 ppbv
Acetaldehyde	1-100 ppbv	1 -10 ppbv
Ethylacetate	1-100 ppbv	10 -100 ppbv
Methanol	1-100 ppbv	1 -10 ppbv
Acetone	1-100 ppbv	1 -10 ppbv
Ethylene	1-50 ppmv	10 -100 ppbv
Ethane	1-100 ppbv	1 -10 ppbv

1 ppbv= 1 part per billion volume= 1: 10⁹

White light laser source

White light

White laser:

- Spectrum, broad as a lamp,
- directionality of a laser

Mid-infrared, fiber-based, supercontinuum laser

Power: 525 mW

Rep. Freq.: 2 MHz

Coverage: 1.5-4.1µm

spectral coverage of a lamp directionality of a laser

Principle gas sensing system

Sensor design

System integration

Gas handling system

Software integration for automated control

Transportable gas sensing system

Operational principles

Continuous monitoring

Smart processing

Interpretation

Feedbacks

Actions

First field trial

Flemish Center for Storage Technology Leuven, Belgium

21-01-2019

First field results

Sampling storage rooms with pears

Feb 2019

Same field and picking date

4 storage conditions (300 L, -1 °C)

- Conventional ULO: 2.5% O₂, 0.7% CO₂
- ULO with low CO₂: 2.5% O₂, 0.2% CO₂
- DCA with 0.7% CO₂ (2 containers)
- DCA with met 0.2% CO₂

DCA: Dynamic Controlled Atmosphere

Comparison with golden standard

(Gas Chromatograph-Mass Spectrometer)

DCA, 0.2% CO₂, week 2

Real-time sensing, pear emision

Conclusions/outlook

- Supercontinuum sources are promising for infrared-spectroscopic-related field applications
- Huge potential in agro-food sector
- Project extension towards onions and carrots
- Follow up project for commercialization via Fast track to Innovation (H2020)

Acknowledgements

Qing Pan

Amir Khodabakhsh

Ali Abbas

Cor Sikkens

Julien Mandon

Khalil Jahromi

Simona Cristescu

Paul Assman

Financial support

Flying an Ultra broadband Infrared Sensor

Using fiber based supercontinuum lasers